Source code for flowvision.models.uniformer

"""
Modified from https://github.com/Sense-X/UniFormer/blob/main/image_classification/models/uniformer.py
"""
from functools import partial
from collections import OrderedDict
import math

import oneflow as flow
import oneflow.nn as nn
import oneflow.nn.functional as F

from flowvision.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from flowvision.layers import trunc_normal_, DropPath
from .helpers import to_2tuple
from .registry import ModelCreator
from .utils import load_state_dict_from_url

model_urls = {
    "uniformer_base": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/UniFormer/uniformer_base_oneflow.zip",
    "uniformer_base_ls": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/UniFormer/uniformer_base_ls_oneflow.zip",
    "uniformer_small": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/UniFormer/uniformer_small_oneflow.zip",
    "uniformer_small_plus": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/UniFormer/uniformer_small_plus_oneflow.zip",
}


layer_scale = False
init_value = 1e-6


class Mlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class CMlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv[0], qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class CBlock(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = nn.BatchNorm2d(dim)
        self.conv1 = nn.Conv2d(dim, dim, 1)
        self.conv2 = nn.Conv2d(dim, dim, 1)
        self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = nn.BatchNorm2d(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = CMlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

    def forward(self, x):
        x = x + self.pos_embed(x)
        x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x)))))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class SABlock(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )
        global layer_scale
        self.ls = layer_scale
        if self.ls:
            global init_value
            print(f"Use layer_scale: {layer_scale}, init_values: {init_value}")
            self.gamma_1 = nn.Parameter(
                init_value * flow.ones((dim)), requires_grad=True
            )
            self.gamma_2 = nn.Parameter(
                init_value * flow.ones((dim)), requires_grad=True
            )

    def forward(self, x):
        x = x + self.pos_embed(x)
        B, N, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        if self.ls:
            x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.attn(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        x = x.transpose(1, 2).reshape(B, N, H, W)
        return x


class head_embedding(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(head_embedding, self).__init__()

        self.proj = nn.Sequential(
            nn.Conv2d(
                in_channels,
                out_channels // 2,
                kernel_size=(3, 3),
                stride=(2, 2),
                padding=(1, 1),
            ),
            nn.BatchNorm2d(out_channels // 2),
            nn.GELU(),
            nn.Conv2d(
                out_channels // 2,
                out_channels,
                kernel_size=(3, 3),
                stride=(2, 2),
                padding=(1, 1),
            ),
            nn.BatchNorm2d(out_channels),
        )

    def forward(self, x):
        x = self.proj(x)
        return x


class middle_embedding(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(middle_embedding, self).__init__()

        self.proj = nn.Sequential(
            nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size=(3, 3),
                stride=(2, 2),
                padding=(1, 1),
            ),
            nn.BatchNorm2d(out_channels),
        )

    def forward(self, x):
        x = self.proj(x)
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.norm = nn.LayerNorm(embed_dim)
        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
        )

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert (
            H == self.img_size[0] and W == self.img_size[1]
        ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)
        B, C, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        return x


class UniFormer(nn.Module):
    """ UniFormer
    A oneflow impl of : `UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning`  -
        https://arxiv.org/abs/2201.04676
    """

    def __init__(
        self,
        depth=[3, 4, 8, 3],
        img_size=224,
        in_chans=3,
        num_classes=1000,
        embed_dim=[64, 128, 320, 512],
        head_dim=64,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        representation_size=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.0,
        norm_layer=None,
        conv_stem=False,
    ):
        """
        Args:
            depth (list): depth of each stage
            img_size (int, tuple): input image size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (list): embedding dimension of each stage
            head_dim (int): head dimension
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            norm_layer (nn.Module): normalization layer
            conv_stem (bool): whether to use overlapped patch stem
        """
        super().__init__()
        self.num_classes = num_classes
        self.num_features = (
            self.embed_dim
        ) = embed_dim  # num_features for consistency with other models
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        if conv_stem:
            self.patch_embed1 = head_embedding(
                in_channels=in_chans, out_channels=embed_dim[0]
            )
            self.patch_embed2 = middle_embedding(
                in_channels=embed_dim[0], out_channels=embed_dim[1]
            )
            self.patch_embed3 = middle_embedding(
                in_channels=embed_dim[1], out_channels=embed_dim[2]
            )
            self.patch_embed4 = middle_embedding(
                in_channels=embed_dim[2], out_channels=embed_dim[3]
            )
        else:
            self.patch_embed1 = PatchEmbed(
                img_size=img_size,
                patch_size=4,
                in_chans=in_chans,
                embed_dim=embed_dim[0],
            )
            self.patch_embed2 = PatchEmbed(
                img_size=img_size // 4,
                patch_size=2,
                in_chans=embed_dim[0],
                embed_dim=embed_dim[1],
            )
            self.patch_embed3 = PatchEmbed(
                img_size=img_size // 8,
                patch_size=2,
                in_chans=embed_dim[1],
                embed_dim=embed_dim[2],
            )
            self.patch_embed4 = PatchEmbed(
                img_size=img_size // 16,
                patch_size=2,
                in_chans=embed_dim[2],
                embed_dim=embed_dim[3],
            )

        self.pos_drop = nn.Dropout(p=drop_rate)
        dpr = [
            x.item() for x in flow.linspace(0, drop_path_rate, sum(depth))
        ]  # stochastic depth decay rule
        num_heads = [dim // head_dim for dim in embed_dim]
        self.blocks1 = nn.ModuleList(
            [
                CBlock(
                    dim=embed_dim[0],
                    num_heads=num_heads[0],
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                )
                for i in range(depth[0])
            ]
        )
        self.blocks2 = nn.ModuleList(
            [
                CBlock(
                    dim=embed_dim[1],
                    num_heads=num_heads[1],
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i + depth[0]],
                    norm_layer=norm_layer,
                )
                for i in range(depth[1])
            ]
        )
        self.blocks3 = nn.ModuleList(
            [
                SABlock(
                    dim=embed_dim[2],
                    num_heads=num_heads[2],
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i + depth[0] + depth[1]],
                    norm_layer=norm_layer,
                )
                for i in range(depth[2])
            ]
        )
        self.blocks4 = nn.ModuleList(
            [
                SABlock(
                    dim=embed_dim[3],
                    num_heads=num_heads[3],
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i + depth[0] + depth[1] + depth[2]],
                    norm_layer=norm_layer,
                )
                for i in range(depth[3])
            ]
        )
        self.norm = nn.BatchNorm2d(embed_dim[-1])

        # Representation layer
        if representation_size:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(
                OrderedDict(
                    [
                        ("fc", nn.Linear(embed_dim, representation_size)),
                        ("act", nn.Tanh()),
                    ]
                )
            )
        else:
            self.pre_logits = nn.Identity()

        # Classifier head
        self.head = (
            nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
        )

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def no_weight_decay(self):
        return {"pos_embed", "cls_token"}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=""):
        self.num_classes = num_classes
        self.head = (
            nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
        )

    def forward_features(self, x):
        x = self.patch_embed1(x)
        x = self.pos_drop(x)
        for blk in self.blocks1:
            x = blk(x)
        x = self.patch_embed2(x)
        for blk in self.blocks2:
            x = blk(x)
        x = self.patch_embed3(x)
        for blk in self.blocks3:
            x = blk(x)
        x = self.patch_embed4(x)
        for blk in self.blocks4:
            x = blk(x)
        x = self.norm(x)
        x = self.pre_logits(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = x.flatten(2).mean(-1)
        x = self.head(x)
        return x


def _create_uniformer(arch, pretrained=False, progress=True, **model_kwargs):
    model = UniFormer(**model_kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model


[docs]@ModelCreator.register_model def uniformer_small(pretrained=False, progress=True, **kwargs): """ Constructs the UniFormer-Small model. .. note:: UniFormer-Small model from `UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning` - https://arxiv.org/abs/2201.04676 Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> uniformer_small = flowvision.models.uniformer_small(pretrained=False, progress=True) """ model_kwargs = dict( depth=[3, 4, 8, 3], embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs, ) return _create_uniformer( "uniformer_small", pretrained=pretrained, progress=progress, **model_kwargs )
[docs]@ModelCreator.register_model def uniformer_small_plus(pretrained=False, progress=True, **kwargs): """ Constructs the UniFormer-Small-Plus model. .. note:: UniFormer-Small-Plus model from `UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning` - https://arxiv.org/abs/2201.04676 Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> uniformer_small_plus = flowvision.models.uniformer_small_plus(pretrained=False, progress=True) """ model_kwargs = dict( depth=[3, 5, 9, 3], conv_stem=True, embed_dim=[64, 128, 320, 512], head_dim=32, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs, ) return _create_uniformer( "uniformer_small_plus", pretrained=pretrained, progress=progress, **model_kwargs )
[docs]@ModelCreator.register_model def uniformer_base(pretrained=False, progress=True, **kwargs): """ Constructs the UniFormer-Base model. .. note:: UniFormer-Base model from `UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning` - https://arxiv.org/abs/2201.04676 Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> uniformer_base= flowvision.models.uniformer_base(pretrained=False, progress=True) """ model_kwargs = dict( depth=[5, 8, 20, 7], embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs, ) return _create_uniformer( "uniformer_base", pretrained=pretrained, progress=progress, **model_kwargs )
[docs]@ModelCreator.register_model def uniformer_base_ls(pretrained=False, progress=True, **kwargs): """ Constructs the UniFormer-Base-Ls model. .. note:: UniFormer-Base-Ls model from `UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning` - https://arxiv.org/abs/2201.04676 Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> uniformer_base_ls = flowvision.models.uniformer_base_ls(pretrained=False, progress=True) """ global layer_scale layer_scale = True model_kwargs = dict( depth=[5, 8, 20, 7], embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs, ) return _create_uniformer( "uniformer_base_ls", pretrained=pretrained, progress=progress, **model_kwargs )