Source code for flowvision.models.swin_transformer

"""
Modified from https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
"""

import oneflow as flow
import oneflow.nn as nn

from flowvision.layers import trunc_normal_
from .registry import ModelCreator
from .utils import load_state_dict_from_url


# Note that model with `in22k` means pretrained weight on imagenet22k dataset
model_urls = {
    "swin_tiny_patch4_window7_224": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/Swin_Transformer/swin_tiny_patch4_window7_224.zip",
    "swin_small_patch4_window7_224": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/Swin_Transformer/swin_small_patch4_window7_224.zip",
    "swin_base_patch4_window7_224": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/Swin_Transformer/swin_base_patch4_window7_224.zip",
    "swin_base_patch4_window12_384": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/Swin_Transformer/swin_base_patch4_window12_384.zip",
    "swin_base_patch4_window7_224_in22k_to_1k": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/Swin_Transformer/swin_base_patch4_window7_224_in22k_to_1k.zip",
    "swin_base_patch4_window12_384_in22k_to_1k": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/Swin_Transformer/swin_base_patch4_window12_384_in22k_to_1k.zip",
    "swin_large_patch4_window7_224_in22k_to_1k": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/Swin_Transformer/swin_large_patch4_window7_224_in22k_to_1k.zip",
    "swin_large_patch4_window12_384_in22k_to_1k": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/Swin_Transformer/swin_large_patch4_window12_384_in22k_to_1k.zip",
}


# helpers
def to_2tuple(x):
    return (x, x)


def drop_path(x, drop_prob: float = 0.5, training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (
        x.ndim - 1
    )  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + flow.rand(*shape, dtype=x.dtype, device=x.device)
    random_tensor = random_tensor.floor()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x)


def window_partition(x, window_size):
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = (
        x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    )
    return windows


def window_reverse(windows, window_size, H, W):
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(
        B, H // window_size, W // window_size, window_size, window_size, -1
    )
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class Mlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        dim (int): Number of input channels
        window_size (tuple[int]): The height and width of the window
        num_heads (int): Number of attention heads
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: ``True``
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: ``0.0``
        proj_drop (float, optional): Dropout ratio of output. Default: ``0.0``
    """

    def __init__(
        self,
        dim,
        window_size,
        num_heads,
        qkv_bias=True,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
    ):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            flow.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
        )  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = flow.arange(self.window_size[0])
        coords_w = flow.arange(self.window_size[1])
        coords = flow.stack(flow.meshgrid(*[coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = flow.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = (
            coords_flatten[:, :, None] - coords_flatten[:, None, :]
        )  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0)  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=0.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B_, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = flow.matmul(q, k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)
        ].view(
            self.window_size[0] * self.window_size[1],
            self.window_size[0] * self.window_size[1],
            -1,
        )  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1
        )  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
                1
            ).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = flow.matmul(attn, v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.
    Args:
        dim (int): Number of input channels
        input_resolution (tuple[int]): Input resulotion
        num_heads (int): Number of attention heads
        window_size (int): Window size
        shift_size (int): Shift size for SW-MSA
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: ``True``
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        drop (float, optional): Dropout rate. Default: ``0.0``
        attn_drop (float, optional): Attention dropout rate. Default: ``0.0``
        drop_path (float, optional): Stochastic depth rate. Default: ``0.0``
        act_layer (nn.Module, optional): Activation layer. Default: ``nn.GELU``
        norm_layer (nn.Module, optional): Normalization layer.  Default: ``nn.LayerNorm``
    """

    def __init__(
        self,
        dim,
        input_resolution,
        num_heads,
        window_size=7,
        shift_size=0,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert (
            0 <= self.shift_size < self.window_size
        ), "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

        if self.shift_size > 0:
            # calculate attention mask for SW-MSA
            H, W = self.input_resolution
            img_mask = flow.zeros((1, H, W, 1))  # 1 H W 1
            h_slices = (
                slice(0, -self.window_size),
                slice(-self.window_size, -self.shift_size),
                slice(-self.shift_size, None),
            )
            w_slices = (
                slice(0, -self.window_size),
                slice(-self.window_size, -self.shift_size),
                slice(-self.shift_size, None),
            )
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1

            mask_windows = window_partition(
                img_mask, self.window_size
            )  # nW, window_size, window_size, 1
            mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(
                attn_mask != 0, float(-100.0)
            ).masked_fill(attn_mask == 0, float(0.0))
        else:
            attn_mask = None

        self.register_buffer("attn_mask", attn_mask)

    def forward(self, x):
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = flow.roll(
                x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
            )
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition(
            shifted_x, self.window_size
        )  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(
            -1, self.window_size * self.window_size, C
        )  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(
            x_windows, mask=self.attn_mask
        )  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = flow.roll(
                shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
            )
        else:
            x = shifted_x
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class PatchMerging(nn.Module):
    r""" Patch Merging Layer.
    Args:
        input_resolution (tuple[int]): Resolution of input feature
        dim (int): Number of input channels
        norm_layer (nn.Module, optional): Normalization layer.  Default: ``nn.LayerNorm``
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = flow.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding
    Args:
        img_size (int): Image size. Default: ``224``
        patch_size (int): Patch token size. Default: ``4``
        in_chans (int): Number of input image channels. Default: ``3``
        embed_dim (int): Number of linear projection output channels. Default: ``96``
        norm_layer (nn.Module, optional): Normalization layer. Default: ``None``
    """

    def __init__(
        self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None
    ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [
            img_size[0] // patch_size[0],
            img_size[1] // patch_size[1],
        ]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
        )
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert (
            H == self.img_size[0] and W == self.img_size[1]
        ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x


class BasicLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.
    Args:
        dim (int): Number of input channels
        input_resolution (tuple[int]): Input resolution
        depth (int): Number of blocks
        num_heads (int): Number of attention heads
        window_size (int): Local window size
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: ``True``
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        drop (float, optional): Dropout rate. Default: ``0.0``
        attn_drop (float, optional): Attention dropout rate. Default: ``0.0``
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: ``0.0``
        norm_layer (nn.Module, optional): Normalization layer. Default: ``nn.LayerNorm``
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: ``None``
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: ``False``
    """

    def __init__(
        self,
        dim,
        input_resolution,
        depth,
        num_heads,
        window_size,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        norm_layer=nn.LayerNorm,
        downsample=None,
        use_checkpoint=False,
    ):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList(
            [
                SwinTransformerBlock(
                    dim=dim,
                    input_resolution=input_resolution,
                    num_heads=num_heads,
                    window_size=window_size,
                    shift_size=0 if (i % 2 == 0) else window_size // 2,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop,
                    attn_drop=attn_drop,
                    drop_path=drop_path[i]
                    if isinstance(drop_path, list)
                    else drop_path,
                    norm_layer=norm_layer,
                )
                for i in range(depth)
            ]
        )

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(
                input_resolution, dim=dim, norm_layer=norm_layer
            )
        else:
            self.downsample = None

    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                raise Exception("Torch use Checkpoint!")
                # x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        if self.downsample is not None:
            x = self.downsample(x)
        return x


class SwinTransformer(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030
    Args:
        img_size (int | tuple(int)): Input image size. Default ``224``
        patch_size (int | tuple(int)): Patch size. Default: ``4``
        in_chans (int): Number of input image channels. Default: ``3``
        num_classes (int): Number of classes for classification head. Default: ``1000``
        embed_dim (int): Patch embedding dimension. Default: ``96``
        depths (tuple(int)): Depth of each Swin Transformer layer
        num_heads (tuple(int)): Number of attention heads in different layers
        window_size (int): Window size. Default: ``7``
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: ``4``
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: ``True``
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: ``None``
        drop_rate (float): Dropout rate. Default: ``0``
        attn_drop_rate (float): Attention dropout rate. Default: ``0``
        drop_path_rate (float): Stochastic depth rate. Default: ``0.1``
        norm_layer (nn.Module): Normalization layer. Default: ``nn.LayerNorm``
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: ``False``
        patch_norm (bool): If True, add normalization after patch embedding. Default: ``True``
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: ``False``
    """

    def __init__(
        self,
        img_size=224,
        patch_size=4,
        in_chans=3,
        num_classes=1000,
        embed_dim=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        window_size=7,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.1,
        norm_layer=nn.LayerNorm,
        ape=False,
        patch_norm=True,
        use_checkpoint=False,
        **kwargs,
    ):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None,
        )
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(
                flow.zeros(1, num_patches, embed_dim)
            )
            trunc_normal_(self.absolute_pos_embed, std=0.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [
            x.item() for x in flow.linspace(0, drop_path_rate, sum(depths))
        ]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(
                dim=int(embed_dim * 2 ** i_layer),
                input_resolution=(
                    patches_resolution[0] // (2 ** i_layer),
                    patches_resolution[1] // (2 ** i_layer),
                ),
                depth=depths[i_layer],
                num_heads=num_heads[i_layer],
                window_size=window_size,
                mlp_ratio=self.mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
                norm_layer=norm_layer,
                downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                use_checkpoint=use_checkpoint,
            )
            self.layers.append(layer)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = (
            nn.Linear(self.num_features, num_classes)
            if num_classes > 0
            else nn.Identity()
        )

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x)

        x = self.norm(x)  # B L C
        x = self.avgpool(x.transpose(1, 2))  # B C 1
        x = flow.flatten(x, 1)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _create_swin_transformer(arch, pretrained=False, progress=True, **model_kwargs):
    model = SwinTransformer(**model_kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model


[docs]@ModelCreator.register_model def swin_tiny_patch4_window7_224(pretrained=False, progress=True, **kwargs): """ Constructs Swin-T 224x224 model trained on ImageNet-1k. .. note:: Swin-T 224x224 model from `"Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" <https://arxiv.org/pdf/2103.14030>`_. Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> swin_tiny_patch4_window7_224 = flowvision.models.swin_tiny_patch4_window7_224(pretrained=False, progress=True) """ model_kwargs = dict( img_size=224, patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), drop_path_rate=0.2, **kwargs, ) return _create_swin_transformer( "swin_tiny_patch4_window7_224", pretrained=pretrained, progress=progress, **model_kwargs, )
[docs]@ModelCreator.register_model def swin_small_patch4_window7_224(pretrained=False, progress=True, **kwargs): """ Constructs Swin-S 224x224 model trained on ImageNet-1k. .. note:: Swin-S 224x224 model from `"Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" <https://arxiv.org/pdf/2103.14030>`_. Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> swin_small_patch4_window7_224 = flowvision.models.swin_small_patch4_window7_224(pretrained=False, progress=True) """ model_kwargs = dict( img_size=224, patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), drop_path_rate=0.3, **kwargs, ) return _create_swin_transformer( "swin_small_patch4_window7_224", pretrained=pretrained, progress=progress, **model_kwargs, )
[docs]@ModelCreator.register_model def swin_base_patch4_window7_224(pretrained=False, progress=True, **kwargs): """ Constructs Swin-B 224x224 model trained on ImageNet-1k. .. note:: Swin-B 224x224 model from `"Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" <https://arxiv.org/pdf/2103.14030>`_. Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> swin_base_patch4_window7_224 = flowvision.models.swin_base_patch4_window7_224(pretrained=False, progress=True) """ model_kwargs = dict( img_size=224, patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), drop_path_rate=0.5, **kwargs, ) return _create_swin_transformer( "swin_base_patch4_window7_224", pretrained=pretrained, progress=progress, **model_kwargs, )
[docs]@ModelCreator.register_model def swin_base_patch4_window12_384(pretrained=False, progress=True, **kwargs): """ Constructs Swin-B 384x384 model trained on ImageNet-1k. .. note:: Swin-B 384x384 model from `"Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" <https://arxiv.org/pdf/2103.14030>`_. Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> swin_base_patch4_window12_384 = flowvision.models.swin_base_patch4_window12_384(pretrained=False, progress=True) """ model_kwargs = dict( img_size=384, patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), drop_path_rate=0.5, **kwargs, ) return _create_swin_transformer( "swin_base_patch4_window12_384", pretrained=pretrained, progress=progress, **model_kwargs, )
[docs]@ModelCreator.register_model def swin_base_patch4_window7_224_in22k_to_1k(pretrained=False, progress=True, **kwargs): """ Constructs Swin-B 224x224 model pretrained on ImageNet-22k and fine tuned on ImageNet-1k. .. note:: Swin-B 224x224 model from `"Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" <https://arxiv.org/pdf/2103.14030>`_. Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> swin_base_patch4_window7_224_in22k_to_1k = flowvision.models.swin_base_patch4_window7_224_in22k_to_1k(pretrained=False, progress=True) """ model_kwargs = dict( img_size=224, patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), drop_path_rate=0.5, **kwargs, ) return _create_swin_transformer( "swin_base_patch4_window7_224_in22k_to_1k", pretrained=pretrained, progress=progress, **model_kwargs, )
[docs]@ModelCreator.register_model def swin_base_patch4_window12_384_in22k_to_1k( pretrained=False, progress=True, **kwargs ): """ Constructs Swin-B 384x384 model pretrained on ImageNet-22k and fine tuned on ImageNet-1k. .. note:: Swin-B 384x384 model from `"Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" <https://arxiv.org/pdf/2103.14030>`_. Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> swin_base_patch4_window12_384_in22k_to_1k = flowvision.models.swin_base_patch4_window12_384_in22k_to_1k(pretrained=False, progress=True) """ model_kwargs = dict( img_size=384, patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), drop_path_rate=0.5, **kwargs, ) return _create_swin_transformer( "swin_base_patch4_window12_384_in22k_to_1k", pretrained=pretrained, progress=progress, **model_kwargs, )
[docs]@ModelCreator.register_model def swin_large_patch4_window7_224_in22k_to_1k( pretrained=False, progress=True, **kwargs ): """ Constructs Swin-L 224x224 model pretrained on ImageNet-22k and fine tuned on ImageNet-1k. .. note:: Swin-L 224x224 model from `"Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" <https://arxiv.org/pdf/2103.14030>`_. Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> swin_large_patch4_window7_224_in22k_to_1k = flowvision.models.swin_large_patch4_window7_224_in22k_to_1k(pretrained=False, progress=True) """ model_kwargs = dict( img_size=224, patch_size=4, window_size=7, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), drop_path_rate=0.5, **kwargs, ) return _create_swin_transformer( "swin_large_patch4_window7_224_in22k_to_1k", pretrained=pretrained, progress=progress, **model_kwargs, )
[docs]@ModelCreator.register_model def swin_large_patch4_window12_384_in22k_to_1k( pretrained=False, progress=True, **kwargs ): """ Constructs Swin-L 384x384 model pretrained on ImageNet-22k and fine tuned on ImageNet-1k. .. note:: Swin-L 384x384 model from `"Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" <https://arxiv.org/pdf/2103.14030>`_. Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> swin_large_patch4_window12_384_in22k_to_1k = flowvision.models.swin_large_patch4_window12_384_in22k_to_1k(pretrained=False, progress=True) """ model_kwargs = dict( img_size=384, patch_size=4, window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), drop_path_rate=0.5, **kwargs, ) return _create_swin_transformer( "swin_large_patch4_window12_384_in22k_to_1k", pretrained=pretrained, progress=progress, **model_kwargs, )