Source code for flowvision.models.mobilenet_v2

"""
Modified from https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py
"""
import math
from typing import Callable, Any, Optional, List

import oneflow as flow
from oneflow import nn, Tensor

from .utils import load_state_dict_from_url
from .registry import ModelCreator
from .helpers import make_divisible


__all__ = ["MobileNetV2", "mobilenet_v2"]


model_urls = {
    "mobilenet_v2": "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/MobileNet/mobilenet_v2.zip",
}


class ConvBNActivation(nn.Sequential):
    def __init__(
        self,
        in_planes: int,
        out_planes: int,
        kernel_size: int = 3,
        stride: int = 1,
        groups: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        activation_layer: Optional[Callable[..., nn.Module]] = None,
        dilation: int = 1,
    ) -> None:
        padding = (kernel_size - 1) // 2 * dilation
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if activation_layer is None:
            activation_layer = nn.ReLU6
        super().__init__(
            nn.Conv2d(
                in_planes,
                out_planes,
                kernel_size,
                stride,
                padding,
                dilation=dilation,
                groups=groups,
                bias=False,
            ),
            norm_layer(out_planes),
            activation_layer(inplace=True),
        )
        self.out_channels = out_planes


# necessary for backwards compatibility
ConvBNReLU = ConvBNActivation


class InvertedResidual(nn.Module):
    def __init__(
        self,
        inp: int,
        oup: int,
        stride: int,
        expand_ratio: int,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers: List[nn.Module] = []
        if expand_ratio != 1:
            # pw
            layers.append(
                ConvBNReLU(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer)
            )
        layers.extend(
            [
                # dw
                ConvBNReLU(
                    hidden_dim,
                    hidden_dim,
                    stride=stride,
                    groups=hidden_dim,
                    norm_layer=norm_layer,
                ),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                norm_layer(oup),
            ]
        )
        self.conv = nn.Sequential(*layers)
        self.out_channels = oup
        self._is_cn = stride > 1

    def forward(self, x: flow.Tensor) -> flow.Tensor:
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(
        self,
        num_classes: int = 1000,
        width_mult: float = 1.0,
        inverted_residual_setting: Optional[List[List[int]]] = None,
        round_nearest: int = 8,
        block: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        """
        MobileNet V2 main class
        Args:
            num_classes (int): Number of classes
            width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
            inverted_residual_setting: Network structure
            round_nearest (int): Round the number of channels in each layer to be a multiple of this number.
            Set to 1 to turn off rounding
            block: Module specifying inverted residual building block for mobilenet
            norm_layer: Module specifying the normalization layer to use
        """
        super(MobileNetV2, self).__init__()

        if block is None:
            block = InvertedResidual

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        input_channel = 32
        last_channel = 1280

        if inverted_residual_setting is None:
            inverted_residual_setting = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # only check the first element, assuming user knows t,c,n,s are required
        if (
            len(inverted_residual_setting) == 0
            or len(inverted_residual_setting[0]) != 4
        ):
            raise ValueError(
                "inverted_residual_setting should be non-empty "
                "or a 4-element list, got {}".format(inverted_residual_setting)
            )

        # building first layer
        input_channel = make_divisible(input_channel * width_mult, round_nearest)
        self.last_channel = make_divisible(
            last_channel * max(1.0, width_mult), round_nearest
        )
        features: List[nn.Module] = [
            ConvBNReLU(3, input_channel, stride=2, norm_layer=norm_layer)
        ]
        # building inverted residual blocks
        for t, c, n, s in inverted_residual_setting:
            output_channel = make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(
                    block(
                        input_channel,
                        output_channel,
                        stride,
                        expand_ratio=t,
                        norm_layer=norm_layer,
                    )
                )
                input_channel = output_channel
        # building last several layers
        features.append(
            ConvBNReLU(
                input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer
            )
        )

        # make it nn.Sequential
        self.features = nn.Sequential(*features)
        self.adaptive_avg_pool2d = nn.AdaptiveAvgPool2d((1, 1))

        # building classifier
        self.classifier = nn.Sequential(
            nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes),
        )

        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)
        # Cannot use "squeeze" as batch-size can be 1
        x = self.adaptive_avg_pool2d(x)
        x = flow.flatten(x, 1)
        x = self.classifier(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


[docs]@ModelCreator.register_model def mobilenet_v2( pretrained: bool = False, progress: bool = True, **kwargs: Any ) -> MobileNetV2: """ Constructs the MobileNetV2 model. .. note:: MobileNetV2 model architecture from the `MobileNetV2: Inverted Residuals and Linear Bottlenecks <https://arxiv.org/abs/1801.04381>`_ paper. Args: pretrained (bool): Whether to download the pre-trained model on ImageNet. Default: ``False`` progress (bool): If True, displays a progress bar of the download to stderr. Default: ``True`` For example: .. code-block:: python >>> import flowvision >>> mobilenet_v2 = flowvision.models.mobilenet_v2(pretrained=False, progress=True) """ model = MobileNetV2(**kwargs) if pretrained: state_dict = load_state_dict_from_url( model_urls["mobilenet_v2"], progress=progress ) model.load_state_dict(state_dict) return model