Welcome to flowvision’s documentation!¶
Getting Started¶
Installation¶
To install latest stable release of flowvision:
pip install flowvision==0.1.0
For an editable install
git clone https://github.com/Oneflow-Inc/vision.git
cd vision
pip install -e .
Usage¶
Create a model¶
In flowvision we support two ways to create a model.
Import the target model from
flowvision.models
, e.g., createalexnet
from flowvision
from flowvision.models.alexnet import alexnet
model = alexnet()
# will download the pretrained model
model = alexnet(pretrained=True)
# customize model to fit different number of classes
model = alexnet(num_classes=100)
Or create model in an easier way by using
ModelCreator
, e.g., createalexnet
model byModelCreator
from flowvision.models import ModelCreator
alexnet = ModelCreator.create_model("alexnet")
# will download the pretrained model
alexnet = ModelCreator.create_model("alexnet", pretrained=True)
# customize model to fit different number of classes
alexnet = ModelCreator.create_model("alexnet", num_classes=100)
Tabulate all models with pretrained weights¶
ModelCreator.model_table()
returns a tabular results of available models in flowvision
. To check all of pretrained models, pass in pretrained=True
in ModelCreator.model_table()
.
from flowvision.models import ModelCreator
all_pretrained_models = ModelCreator.model_table(pretrained=True)
print(all_pretrained_models)
You can get the results like:
╒════════════════════════════════════════════╤══════════════╕
│ Supported Models │ Pretrained │
╞════════════════════════════════════════════╪══════════════╡
│ alexnet │ true │
├────────────────────────────────────────────┼──────────────┤
│ convmixer_1024_20 │ true │
├────────────────────────────────────────────┼──────────────┤
│ convmixer_1536_20 │ true │
├────────────────────────────────────────────┼──────────────┤
│ convmixer_768_32_relu │ true │
├────────────────────────────────────────────┼──────────────┤
│ crossformer_base_patch4_group7_224 │ true │
├────────────────────────────────────────────┼──────────────┤
│ crossformer_large_patch4_group7_224 │ true │
├────────────────────────────────────────────┼──────────────┤
│ crossformer_small_patch4_group7_224 │ true │
├────────────────────────────────────────────┼──────────────┤
│ crossformer_tiny_patch4_group7_224 │ true │
├────────────────────────────────────────────┼──────────────┤
│ ... │ ... │
├────────────────────────────────────────────┼──────────────┤
│ wide_resnet101_2 │ true │
├────────────────────────────────────────────┼──────────────┤
│ wide_resnet50_2 │ true │
╘════════════════════════════════════════════╧══════════════╛
Search for supported model by Wildcard¶
It is easy to search for model architectures by using Wildcard as below:
from flowvision.models import ModelCreator
all_efficientnet_models = ModelCreator.model_table("**efficientnet**")
print(all_efficientnet_models)
You can get the results like:
╒════════════════════╤══════════════╕
│ Supported Models │ Pretrained │
╞════════════════════╪══════════════╡
│ efficientnet_b0 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b1 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b2 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b3 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b4 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b5 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b6 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b7 │ true │
╘════════════════════╧══════════════╛
List all models supported in flowvision¶
ModelCreator.model_list
has similar function as ModelCreator.model_table
but return a list object, which gives the user a more flexible way to check the supported model in flowvision.
List all models with pretrained weights
from flowvision.models import ModelCreator
all_pretrained_models = ModelCreator.model_list(pretrained=True)
print(all_pretrained_models[:5])
You can get the results like:
['alexnet',
'convmixer_1024_20',
'convmixer_1536_20',
'convmixer_768_32_relu',
'crossformer_base_patch4_group7_224']
Support wildcard search
from flowvision.models import ModelCreator
all_efficientnet_models = ModelCreator.model_list("**efficientnet**")
print(all_efficientnet_models)
You can get the results like:
['efficientnet_b0',
'efficientnet_b1',
'efficientnet_b2',
'efficientnet_b3',
'efficientnet_b4',
'efficientnet_b5',
'efficientnet_b6',
'efficientnet_b7']
flowvision.data¶
Advanced data augmentations
-
class
flowvision.data.
AugMixAugment
(ops, alpha=1.0, width=3, depth=- 1, blended=False)[source]¶ AugMix Transform Adapted and improved from impl here: https://github.com/google-research/augmix/blob/master/imagenet.py
From paper AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
-
class
flowvision.data.
AutoAugment
(policy)[source]¶ Auto Augmentation
From paper AutoAugment: Learning Augmentation Policies from Data
-
class
flowvision.data.
Mixup
(mixup_alpha=1.0, cutmix_alpha=0.0, cutmix_minmax=None, prob=1.0, switch_prob=0.5, mode='batch', correct_lam=True, label_smoothing=0.1, num_classes=1000)[source]¶ Mixup/Cutmix that applies different params to each element or whole batch
- Parameters
mixup_alpha (float) – Mixup alpha value, mixup is active if > 0
cutmix_alpha (float) – Cutmix alpha value, cutmix is active if > 0
cutmix_minmax (List[float]) – Cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None
prob (float) – Probability of applying mixup or cutmix per batch or element
switch_prob (float) – Probability of switching to cutmix instead of mixup when both are active
mode (str) – How to apply mixup/cutmix params (per ‘batch’, ‘pair’ (pair of elements), ‘elem’ (element)
correct_lam (bool) – Apply lambda correction when cutmix bbox clipped by image borders
label_smoothing (float) – Apply label smoothing to the mixed target tensor
num_classes (int) – Number of classes for target
-
class
flowvision.data.
RandAugment
(ops, num_layers=2, choice_weights=None)[source]¶ Random Augmentation
From paper RandAugment: Practical automated data augmentation
-
class
flowvision.data.
RandomErasing
(probability=0.5, min_area=0.02, max_area=0.3333333333333333, min_aspect=0.3, max_aspect=None, mode='const', min_count=1, max_count=None, num_splits=0, device='cuda')[source]¶ Randomly selects a rectangle region in an image and erases its pixels. ‘Random Erasing Data Augmentation’ by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf
This variant of RandomErasing is intended to be applied to either a batch or single image tensor after it has been normalized by dataset mean and std.
- Parameters
probability – Probability that the Random Erasing operation will be performed
min_area – Minimum percentage of erased area wrt input image area
max_area – Maximum percentage of erased area wrt input image area
min_aspect – Minimum aspect ratio of erased area
mode –
Pixel color mode, one of ‘const’, ‘rand’, or ‘pixel’
’const’ - erase block is constant color of 0 for all channels
’rand’ - erase block is same per-channel random (normal) color
’pixel’ - erase block is per-pixel random (normal) color
max_count – Maximum number of erasing blocks per image, area per box is scaled by count. per-image count is randomly chosen between 1 and this value
-
flowvision.data.
augment_and_mix_transform
(config_str, hparams)[source]¶ Create AugMix OneFlow transform
- Parameters
config_str –
String defining configuration of random augmentation. Consists of multiple sections separated by dashes (‘-‘). The first section defines the specific variant of rand augment (currently only ‘rand’). The remaining sections, not order sepecific determine
’m’ - integer magnitude (severity) of augmentation mix (default: 3)
’w’ - integer width of augmentation chain (default: 3)
’d’ - integer depth of augmentation chain (-1 is random [1, 3], default: -1)
’b’ - integer (bool), blend each branch of chain into end result without a final blend, less CPU (default: 0)
’mstd’ - float std deviation of magnitude noise applied (default: 0)
Example: ‘augmix-m5-w4-d2’ results in AugMix with severity 5, chain width 4, chain depth 2
hparams – Other hparams (kwargs) for the Augmentation transforms
- Returns
An OneFlow compatible Transform
-
flowvision.data.
auto_augment_transform
(config_str, hparams)[source]¶ Create a AutoAugment transform
- Parameters
config_str –
String defining configuration of auto augmentation. Consists of multiple sections separated by dashes (‘-‘). The first section defines the AutoAugment policy (one of ‘v0’, ‘v0r’, ‘original’, ‘originalr’). The remaining sections, not order sepecific determine
’mstd’ - float std deviation of magnitude noise applied
Example: ‘original-mstd0.5’ results in AutoAugment with original policy, magnitude_std 0.5
hparams – Other hparams (kwargs) for the AutoAugmentation scheme
- Returns
An OneFlow compatible Transform
-
flowvision.data.
cutmix_bbox_and_lam
(img_shape, lam, ratio_minmax=None, correct_lam=True, count=None)[source]¶ Generate bbox and apply lambda correction.
-
flowvision.data.
mixup_target
(target, num_classes, lam=1.0, smoothing=0.0, device='cuda')[source]¶ Mixup the targets with label-smoothing
-
flowvision.data.
rand_augment_transform
(config_str, hparams)[source]¶ Create a RandAugment transform
- Parameters
config_str –
String defining configuration of random augmentation. Consists of multiple sections separated by dashes (‘-‘). The first section defines the specific variant of rand augment (currently only ‘rand’). The remaining sections, not order sepecific determine
’m’ - integer magnitude of rand augment
’n’ - integer num layers (number of transform ops selected per image)
’w’ - integer probabiliy weight index (index of a set of weights to influence choice of op)
’mstd’ - float std deviation of magnitude noise applied, or uniform sampling if infinity (or > 100)
’mmax’ - set upper bound for magnitude to something other than default of _LEVEL_DENOM (10)
’inc’ - integer (bool), use augmentations that increase in severity with magnitude (default: 0)
Example: ‘rand-m9-n3-mstd0.5’ results in RandAugment with magnitude 9, num_layers 3, magnitude_std 0.5 ‘rand-mstd1-w0’ results in magnitude_std 1.0, weights 0, default magnitude of 10 and num_layers 2
hparams – Other hparams (kwargs) for the RandAugmentation scheme
- Returns
An OneFlow compatible Transform
-
flowvision.data.
rand_bbox
(img_shape, lam, margin=0.0, count=None)[source]¶ Standard CutMix bounding-box Generates a random square bbox based on lambda value. This impl includes support for enforcing a border margin as percent of bbox dimensions.
- Parameters
img_shape (tuple) – Image shape as tuple
lam (float) – Cutmix lambda value
margin (float) – Percentage of bbox dimension to enforce as margin (reduce amount of box outside image)
count (int) – Number of bbox to generate
-
flowvision.data.
rand_bbox_minmax
(img_shape, minmax, count=None)[source]¶ Min-Max CutMix bounding-box Inspired by Darknet cutmix impl, generates a random rectangular bbox based on min/max percent values applied to each dimension of the input image. Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max.
- Parameters
img_shape (tuple) – Image shape as tuple
minmax (tuple or list) – Min and max bbox ratios (as percent of image size)
count (int) – Number of bbox to generate
flowvision.datasets¶
Dataset Utils for Visual Tasks¶
-
class
flowvision.datasets.
CIFAR10
(root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, source_url: Optional[str] = None)[source]¶ CIFAR10 Dataset.
- Parameters
root (string) – Root directory of dataset where directory
cifar-10-batches-py
exists or will be saved to if download is set to True.train (bool, optional) – If True, creates dataset from training set, otherwise creates from test set.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g,
transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
-
class
flowvision.datasets.
CIFAR100
(root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, source_url: Optional[str] = None)[source]¶ CIFAR100 Dataset.
This is a subclass of the CIFAR10 Dataset.
-
class
flowvision.datasets.
CocoCaptions
(root: str, annFile: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None)[source]¶ MS Coco Captions Dataset.
- Parameters
root (string) – Root directory where images are downloaded to.
annFile (string) – Path to json annotation file.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g,
transforms.ToTensor
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
transforms (callable, optional) – A function/transform that takes input sample and its target as entry and returns a transformed version.
Example
import flowvision.datasets as dset import flowvision.transforms as transforms cap = dset.CocoCaptions(root = 'dir where images are', annFile = 'json annotation file', transform=transforms.ToTensor()) print('Number of samples: ', len(cap)) img, target = cap[3] # load 4th sample print("Image Size: ", img.size()) print(target)
Output:
Number of samples: 82783 Image Size: (3L, 427L, 640L) [u'A plane emitting smoke stream flying over a mountain.', u'A plane darts across a bright blue sky behind a mountain covered in snow', u'A plane leaves a contrail above the snowy mountain top.', u'A mountain that has a plane flying overheard in the distance.', u'A mountain view with a plume of smoke in the background']
-
class
flowvision.datasets.
CocoDetection
(root: str, annFile: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None)[source]¶ MS Coco Detection Dataset.
- Parameters
root (string) – Root directory where images are downloaded to.
annFile (string) – Path to json annotation file.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g,
transforms.ToTensor
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
transforms (callable, optional) – A function/transform that takes input sample and its target as entry and returns a transformed version.
-
class
flowvision.datasets.
DatasetFolder
(root: str, loader: Callable[[str], Any], extensions: Optional[Tuple[str, …]] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, is_valid_file: Optional[Callable[[str], bool]] = None)[source]¶ A generic data loader. This default directory structure can be customized by overriding the
find_classes()
method.- Parameters
root (string) – Root directory path.
loader (callable) – A function to load a sample given its path.
extensions (tuple[string]) – A list of allowed extensions. both extensions and is_valid_file should not be passed.
transform (callable, optional) – A function/transform that takes in a sample and returns a transformed version. E.g,
transforms.RandomCrop
for images.target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
is_valid_file – A function that takes path of a file and check if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed.
-
find_classes
(directory: str) → Tuple[List[str], Dict[str, int]][source]¶ Find the class folders in a dataset structured as follows:
directory/ ├── class_x │ ├── xxx.ext │ ├── xxy.ext │ └── ... │ └── xxz.ext └── class_y ├── 123.ext ├── nsdf3.ext └── ... └── asd932_.ext
This method can be overridden to only consider a subset of classes, or to adapt to a different dataset directory structure.
- Parameters
directory (str) – Root directory path, corresponding to
self.root
- Raises
FileNotFoundError – If
dir
has no class folders.- Returns
List of all classes and dictionary mapping each class to an index.
- Return type
(Tuple[List[str], Dict[str, int]])
-
static
make_dataset
(directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, …]] = None, is_valid_file: Optional[Callable[[str], bool]] = None) → List[Tuple[str, int]][source]¶ Generates a list of samples of a form (path_to_sample, class). This can be overridden to e.g. read files from a compressed zip file instead of from the disk.
- Parameters
directory (str) – root dataset directory, corresponding to
self.root
.class_to_idx (Dict[str, int]) – Dictionary mapping class name to class index.
extensions (optional) – A list of allowed extensions. Either extensions or is_valid_file should be passed. Defaults to None.
is_valid_file (optional) – A function that takes path of a file and checks if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Defaults to None.
- Raises
ValueError – In case
class_to_idx
is empty.ValueError – In case
extensions
andis_valid_file
are None or both are not None.FileNotFoundError – In case no valid file was found for any class.
- Returns
samples of a form (path_to_sample, class)
- Return type
List[Tuple[str, int]]
-
class
flowvision.datasets.
FashionMNIST
(root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, source_url: Optional[str] = None)[source]¶ Fashion-MNIST Dataset.
- Parameters
root (string) – Root directory of dataset where
FashionMNIST/processed/training.pt
andFashionMNIST/processed/test.pt
exist.train (bool, optional) – If True, creates dataset from
training.pt
, otherwise fromtest.pt
.download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g,
transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
-
class
flowvision.datasets.
ImageFolder
(root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Callable[[str], Any] = <function default_loader>, is_valid_file: Optional[Callable[[str], bool]] = None)[source]¶ A generic data loader where the images are arranged in this way by default:
root/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png
This class inherits from
DatasetFolder
so the same methods can be overridden to customize the dataset.- Parameters
root (string) – Root directory path.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g,
transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
loader (callable, optional) – A function to load an image given its path.
is_valid_file – A function that takes path of an Image file and check if the file is a valid file (used to check of corrupt files)
-
class
flowvision.datasets.
ImageNet
(root: str, split: str = 'train', download: Optional[str] = None, **kwargs: Any)[source]¶ ImageNet 2012 Classification Dataset.
- Parameters
root (string) – Root directory of the ImageNet Dataset.
split (string, optional) – The dataset split, supports
train
, orval
.transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g,
transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
loader – A function to load an image given its path.
-
class
flowvision.datasets.
MNIST
(root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, source_url: Optional[str] = None)[source]¶ MNIST Dataset.
- Parameters
root (string) – Root directory of dataset where
MNIST/processed/training.pt
andMNIST/processed/test.pt
exist.train (bool, optional) – If True, creates dataset from
training.pt
, otherwise fromtest.pt
.download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g,
transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
-
class
flowvision.datasets.
VOCDetection
(root: str, year: str = '2012', image_set: str = 'train', download: bool = False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None)[source]¶ Pascal VOC Detection Dataset.
- Parameters
root (string) – Root directory of the VOC Dataset.
year (string, optional) – The dataset year, supports years
"2007"
to"2012"
.image_set (string, optional) – Select the image_set to use,
"train"
,"trainval"
or"val"
. Ifyear=="2007"
, can also be"test"
.download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. (default: alphabetic indexing of VOC’s 20 classes).
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g,
transforms.RandomCrop
target_transform (callable, required) – A function/transform that takes in the target and transforms it.
transforms (callable, optional) – A function/transform that takes input sample and its target as entry and returns a transformed version.
-
class
flowvision.datasets.
VOCSegmentation
(root: str, year: str = '2012', image_set: str = 'train', download: bool = False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None)[source]¶ Pascal VOC Segmentation Dataset.
- Parameters
root (string) – Root directory of the VOC Dataset.
year (string, optional) – The dataset year, supports years
"2007"
to"2012"
.image_set (string, optional) – Select the image_set to use,
"train"
,"trainval"
or"val"
. Ifyear=="2007"
, can also be"test"
.download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g,
transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
transforms (callable, optional) – A function/transform that takes input sample and its target as entry and returns a transformed version.
flowvision.layers¶
Plug and Play Modules or Functions that are specific for Computer Vision Tasks
flowvision.layers.blocks module¶
-
class
flowvision.layers.blocks.
FeaturePyramidNetwork
(in_channels_list: List[int], out_channels: int, extra_blocks: Optional[flowvision.layers.blocks.feature_pyramid_network.ExtraFPNBlock] = None)[source]¶ Module that adds a FPN from on top of a set of feature maps. This is based on “Feature Pyramid Network for Object Detection”.
The feature maps are currently supposed to be increasing depth order.
The input to the model is expected to be an OrderedDict[Tensor], containing the feature maps on top of which the FPN will be added.
- Parameters
in_channels_list (list[int]) – number of channels for each feature map that is passed to the module
out_channels (int) – number of channels of the FPN representation
extra_blocks (ExtraFPNBlock or None) – if provided, extra operations will be performed. It is expected to take the fpn features, the original features and the names of the original features as input, and returns a new list of feature maps and their corresponding names
-
forward
(x: Dict[str, oneflow.Tensor]) → Dict[str, oneflow.Tensor][source]¶ Computes the FPN for a set of feature maps.
- Parameters
x (OrderedDict[Tensor]) – feature maps for each feature level.
- Returns
- feature maps after FPN layers.
They are ordered from highest resolution first.
- Return type
results (OrderedDict[Tensor])
-
class
flowvision.layers.blocks.
MultiScaleRoIAlign
(featmap_names: List[str], output_size: Union[int, Tuple[int], List[int]], sampling_ratio: int, *, canonical_scale: int = 224, canonical_level: int = 4)[source]¶ Multi-scale RoIAlign pooling, which is useful for detection with or without FPN.
It infers the scale of the pooling via the heuristics specified in eq. 1 of the Feature Pyramid Network paper. They keyword-only parameters
canonical_scale
andcanonical_level
correspond respectively to224
andk0=4
in eq. 1, and have the following meaning:canonical_level
is the target level of the pyramid from which to pool a region of interest withw x h = canonical_scale x canonical_scale
.- Parameters
featmap_names (List[str]) – the names of the feature maps that will be used for the pooling.
output_size (List[Tuple[int, int]] or List[int]) – output size for the pooled region
sampling_ratio (int) – sampling ratio for ROIAlign
canonical_scale (int, optional) – canonical_scale for LevelMapper
canonical_level (int, optional) – canonical_level for LevelMapper
-
forward
(x: Dict[str, oneflow.Tensor], boxes: List[oneflow.Tensor], image_shapes: List[Tuple[int, int]]) → oneflow.Tensor[source]¶ - Parameters
x (OrderedDict[Tensor]) – feature maps for each level. They are assumed to have all the same number of channels, but they can have different sizes.
boxes (List[Tensor[N, 4]]) – boxes to be used to perform the pooling operation, in (x1, y1, x2, y2) format and in the image reference size, not the feature map reference. The coordinate must satisfy
0 <= x1 < x2
and0 <= y1 < y2
.image_shapes (List[Tuple[height, width]]) – the sizes of each image before they have been fed to a CNN to obtain feature maps. This allows us to infer the scale factor for each one of the levels to be pooled.
- Returns
result (Tensor)
-
flowvision.layers.blocks.
batched_nms
(boxes: oneflow.Tensor, scores: oneflow.Tensor, idxs: oneflow.Tensor, iou_threshold: float) → oneflow.Tensor[source]¶ Performs non-maximum suppression in a batched fashion.
Each index value correspond to a category, and NMS will not be applied between elements of different categories.
- Parameters
boxes (Tensor[N, 4]) – boxes where NMS will be performed. They are expected to be in
(x1, y1, x2, y2)
format with0 <= x1 < x2
and0 <= y1 < y2
.scores (Tensor[N]) – scores for each one of the boxes
idxs (Tensor[N]) – indices of the categories for each one of the boxes.
iou_threshold (float) – discards all overlapping boxes with IoU > iou_threshold
- Returns
int64 tensor with the indices of the elements that have been kept by NMS, sorted in decreasing order of scores
- Return type
Tensor
-
flowvision.layers.blocks.
box_iou
(boxes1: oneflow.Tensor, boxes2: oneflow.Tensor) → oneflow.Tensor[source]¶ Return intersection-over-union (Jaccard index) between two sets of boxes.
Both sets of boxes are expected to be in
(x1, y1, x2, y2)
format with0 <= x1 < x2
and0 <= y1 < y2
.- Parameters
boxes1 (Tensor[N, 4]) – first set of boxes
boxes2 (Tensor[N, 4]) – second set of boxes
- Returns
the NxM matrix containing the pairwise IoU values for every element in boxes 1 and boxes2
- Return type
Tensor[N, M]
-
flowvision.layers.blocks.
nms
(boxes: oneflow.Tensor, scores: oneflow.Tensor, iou_threshold: float) → oneflow.Tensor[source]¶ Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union (IoU).
NMS iteratively removes lower scoring boxes which have an IoU greater than iou_threshold with another (higher scoring) box.
- Parameters
boxes (Tensor[N, 4]) – boxes to perform NMS on. They are expected to be in
(x1, y1, x2, y2)
format with0 <= x1 < x2
and0 <= y1 < y2
.scores (Tensor[N]) – scores for each one of the boxes
iou_threshold (float) – discards all overlapping boxes with IoU > iou_threshold
- Returns
int64 tensor with the indices of the elements that have been kept by NMS, sorted in decreasing order of scores
- Return type
Tensor
flowvision.layers.attention module¶
-
class
flowvision.layers.attention.
SEModule
(channels: int, reduction: int = 16, rd_channels: Optional[int] = None, act_layer: Optional[oneflow.nn.modules.activation.ReLU] = <class 'oneflow.nn.modules.activation.ReLU'>, gate_layer: Optional[oneflow.nn.modules.activation.Sigmoid] = <class 'oneflow.nn.modules.activation.Sigmoid'>, mlp_bias=True)[source]¶ “Squeeze-and-Excitation” block adaptively recalibrates channel-wise feature responses. This is based on “Squeeze-and-Excitation Networks”. This unit is designed to improve the representational capacity of a network by enabling it to perform dynamic channel-wise feature recalibration.
- Parameters
channels (int) – The input channel size
reduction (int) – Ratio that allows us to vary the capacity and computational cost of the SE Module. Default: 16
rd_channels (int or None) – Number of reduced channels. If none, uses reduction to calculate
act_layer (Optional[ReLU]) – An activation layer used after the first FC layer. Default: flow.nn.ReLU
gate_layer (Optional[Sigmoid]) – An activation layer used after the second FC layer. Default: flow.nn.Sigmoid
mlp_bias (bool) – If True, add learnable bias to the linear layers. Default: True
flowvision.loss¶
Loss Functions that are specific for Computer Vision Tasks
flowvision.models¶
Pretrain Models for Visual Tasks
Classification¶
The models subpackage contains definitions for the following model architectures for image classification:
Alexnet¶
-
flowvision.models.
alexnet
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.alexnet.AlexNet[source]¶ Constructs the AlexNet model.
Note
AlexNet model architecture from the One weird trick… paper. The required minimum input size of this model is 63x63.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> alexnet = flowvision.models.alexnet(pretrained=False, progress=True)
SqueezeNet¶
-
flowvision.models.
squeezenet1_0
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.squeezenet.SqueezeNet[source]¶ Constructs the SqueezeNet model.
Note
SqueezeNet model from the SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> squeezenet1_0 = flowvision.models.squeezenet1_0(pretrained=False, progress=True)
-
flowvision.models.
squeezenet1_1
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.squeezenet.SqueezeNet[source]¶ Constructs the SqueezeNet 1.1 model.
Note
SqueezeNet 1.1 model from the SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size paper. Note that SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> squeezenet1_1 = flowvision.models.squeezenet1_1(pretrained=False, progress=True)
VGG¶
-
flowvision.models.
vgg11
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.vgg.VGG[source]¶ Constructs the VGG-11 model (configuration “A”).
Note
VGG 11-layer model (configuration “A”) from “Very Deep Convolutional Networks For Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vgg11 = flowvision.models.vgg11(pretrained=False, progress=True)
-
flowvision.models.
vgg11_bn
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.vgg.VGG[source]¶ Constructs the VGG-11 model with batch normalization (configuration “A”).
Note
VGG 11-layer model (configuration “A”) with batch normalization “Very Deep Convolutional Networks For Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vgg11_bn = flowvision.models.vgg11_bn(pretrained=False, progress=True)
-
flowvision.models.
vgg13
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.vgg.VGG[source]¶ Constructs the VGG-13 model (configuration “B”).
Note
VGG 13-layer model (configuration “B”) from “Very Deep Convolutional Networks For Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vgg13 = flowvision.models.vgg13(pretrained=False, progress=True)
-
flowvision.models.
vgg13_bn
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.vgg.VGG[source]¶ Constructs the VGG-13 model with batch normalization (configuration “B”).
Note
VGG 13-layer model (configuration “B”) with batch normalization from “Very Deep Convolutional Networks For Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vgg13_bn = flowvision.models.vgg13_bn(pretrained=False, progress=True)
-
flowvision.models.
vgg16
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.vgg.VGG[source]¶ Constructs the VGG-16 model (configuration “D”).
Note
VGG 16-layer model (configuration “D”) from “Very Deep Convolutional Networks For Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vgg16 = flowvision.models.vgg16(pretrained=False, progress=True)
-
flowvision.models.
vgg16_bn
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.vgg.VGG[source]¶ Constructs the VGG-16 model (configuration “D”) with batch normalization.
Note
VGG 16-layer model (configuration “D”) with batch normalization from “Very Deep Convolutional Networks For Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vgg16_bn = flowvision.models.vgg16_bn(pretrained=False, progress=True)
-
flowvision.models.
vgg19
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.vgg.VGG[source]¶ Constructs the VGG-19 model (configuration “E”).
Note
VGG 19-layer model (configuration “E”) from “Very Deep Convolutional Networks For Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vgg19 = flowvision.models.vgg19(pretrained=False, progress=True)
-
flowvision.models.
vgg19_bn
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.vgg.VGG[source]¶ Constructs the VGG-19 model (configuration “E”) with batch normalization.
Note
VGG 19-layer model (configuration “E”) with batch normalization from “Very Deep Convolutional Networks For Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vgg19_bn = flowvision.models.vgg19_bn(pretrained=False, progress=True)
GoogLeNet¶
-
flowvision.models.
googlenet
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.googlenet.GoogLeNet[source]¶ Constructs the GoogLeNet (Inception v1) model.
Note
GoogLeNet (Inception v1) model from the Going Deeper with Convolutions paper. The required minimum input size of the model is 15x15.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
aux_logits (bool) – If True, adds two auxiliary branches that can improve training. Default:
False
when pretrained is True otherwiseTrue
transform_input (bool) – If True, preprocesses the input according to the method with which it was trained on ImageNet. Default:
False
For example:
>>> import flowvision >>> googlenet = flowvision.models.googlenet(pretrained=False, progress=True)
InceptionV3¶
-
flowvision.models.
inception_v3
(pretrained: bool = False, progress: bool = True, **kwargs: Any)[source]¶ Constructs Inception v3 model.
Note
Inception v3 model from the Rethinking the Inception Architecture for Computer Vision paper. In contrast to the other models the inception_v3 expects tensors with a size of N x 3 x 299 x 299, so ensure your images are sized accordingly.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
aux_logits (bool) – If True, add an auxiliary branch that can improve training. Default:
True
transform_input (bool) – If True, preprocesses the input according to the method with which it was trained on ImageNet. Default:
False
For example:
>>> import flowvision >>> inception_v3 = flowvision.models.inception_v3(pretrained=False, progress=True)
ResNet¶
-
flowvision.models.
resnet101
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.resnet.ResNet[source]¶ Constructs the ResNet-101 model.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnet101 = flowvision.models.resnet101(pretrained=False, progress=True)
-
flowvision.models.
resnet152
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.resnet.ResNet[source]¶ Constructs the ResNet-152 model.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnet152 = flowvision.models.resnet152(pretrained=False, progress=True)
-
flowvision.models.
resnet18
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.resnet.ResNet[source]¶ Constructs the ResNet-18 model.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnet18 = flowvision.models.resnet18(pretrained=False, progress=True)
-
flowvision.models.
resnet34
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.resnet.ResNet[source]¶ Constructs the ResNet-34 model.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnet34 = flowvision.models.resnet34(pretrained=False, progress=True)
-
flowvision.models.
resnet50
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.resnet.ResNet[source]¶ Constructs the ResNet-50 model.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnet50 = flowvision.models.resnet50(pretrained=False, progress=True)
-
flowvision.models.
resnext101_32x8d
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.resnet.ResNet[source]¶ Constructs the ResNeXt-101 32x8d model.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnext101_32x8d = flowvision.models.resnext101_32x8d(pretrained=False, progress=True)
-
flowvision.models.
resnext50_32x4d
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.resnet.ResNet[source]¶ Constructs the ResNeXt-50 32x4d model.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnext50_32x4d = flowvision.models.resnext50_32x4d(pretrained=False, progress=True)
-
flowvision.models.
wide_resnet101_2
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.resnet.ResNet[source]¶ Constructs the Wide ResNet-101-2 model.
Note
Wide Residual Networks. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> wide_resnet101_2 = flowvision.models.wide_resnet101_2(pretrained=False, progress=True)
-
flowvision.models.
wide_resnet50_2
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.resnet.ResNet[source]¶ Constructs the Wide ResNet-50-2 model.
Note
Wide Residual Networks. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> wide_resnet50_2 = flowvision.models.wide_resnet50_2(pretrained=False, progress=True)
ResNeSt¶
-
flowvision.models.
resnest101
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResNeSt-101 model trained on ImageNet2012.
Note
ResNeSt-101 model from “ResNeSt: Split-Attention Networks” <https://arxiv.org/abs/2004.08955> _. The required input size of the model is 256x256.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnest101 = flowvision.models.resnest101(pretrained=False, progress=True)
-
flowvision.models.
resnest200
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResNeSt-200 model trained on ImageNet2012.
Note
ResNeSt-200 model from “ResNeSt: Split-Attention Networks” <https://arxiv.org/abs/2004.08955> _. The required input size of the model is 320x320.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnest200 = flowvision.models.resnest200(pretrained=False, progress=True)
-
flowvision.models.
resnest269
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResNeSt-269 model trained on ImageNet2012.
Note
ResNeSt-269 model from “ResNeSt: Split-Attention Networks” <https://arxiv.org/abs/2004.08955> _. The required input size of the model is 416x416.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnest269 = flowvision.models.resnest269(pretrained=False, progress=True)
-
flowvision.models.
resnest50
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResNeSt-50 model trained on ImageNet2012.
Note
ResNeSt-50 model from “ResNeSt: Split-Attention Networks” <https://arxiv.org/abs/2004.08955> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resnest50 = flowvision.models.resnest50(pretrained=False, progress=True)
DenseNet¶
-
flowvision.models.
densenet121
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.densenet.DenseNet[source]¶ Constructs the DenseNet-121 model.
Note
DenseNet-121 model architecture from the Densely Connected Convolutional Networks paper. The required minimum input size of the model is 29x29.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> densenet121 = flowvision.models.densenet121(pretrained=False, progress=True)
-
flowvision.models.
densenet161
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.densenet.DenseNet[source]¶ Constructs the DenseNet-161 model.
Note
DenseNet-161 model architecture from the Densely Connected Convolutional Networks paper. The required minimum input size of the model is 29x29.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> densenet161 = flowvision.models.densenet161(pretrained=False, progress=True)
-
flowvision.models.
densenet169
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.densenet.DenseNet[source]¶ Constructs the DenseNet-169 model.
Note
DenseNet-169 model architecture from the Densely Connected Convolutional Networks paper. The required minimum input size of the model is 29x29.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> densenet169 = flowvision.models.densenet169(pretrained=False, progress=True)
-
flowvision.models.
densenet201
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.densenet.DenseNet[source]¶ Constructs the DenseNet-201 model.
Note
DenseNet-201 model architecture from the Densely Connected Convolutional Networks paper. The required minimum input size of the model is 29x29.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> densenet201 = flowvision.models.densenet201(pretrained=False, progress=True)
ShuffleNetV2¶
-
flowvision.models.
shufflenet_v2_x0_5
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.shufflenet_v2.ShuffleNetV2[source]¶ Constructs the ShuffleNetV2(0.5x) model.
Note
ShuffleNetV2 with 0.5x output channels model architecture from the ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> shufflenet_v2_x0_5 = flowvision.models.shufflenet_v2_x0_5(pretrained=False, progress=True)
-
flowvision.models.
shufflenet_v2_x1_0
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.shufflenet_v2.ShuffleNetV2[source]¶ Constructs the ShuffleNetV2(1.0x) model.
Note
ShuffleNetV2 with 1.0x output channels model architecture from the ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> shufflenet_v2_x1_0 = flowvision.models.shufflenet_v2_x1_0(pretrained=False, progress=True)
-
flowvision.models.
shufflenet_v2_x1_5
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.shufflenet_v2.ShuffleNetV2[source]¶ Constructs the ShuffleNetV2(1.5x) model.
Note
ShuffleNetV2 with 1.5x output channels model architecture from the ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> shufflenet_v2_x1_5 = flowvision.models.shufflenet_v2_x1_5(pretrained=False, progress=True)
-
flowvision.models.
shufflenet_v2_x2_0
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.shufflenet_v2.ShuffleNetV2[source]¶ Constructs the ShuffleNetV2(2.0x) model.
Note
ShuffleNetV2 with 2.0x output channels model architecture from the ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> shufflenet_v2_x2_0 = flowvision.models.shufflenet_v2_x2_0(pretrained=False, progress=True)
MobileNetV2¶
-
flowvision.models.
mobilenet_v2
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.mobilenet_v2.MobileNetV2[source]¶ Constructs the MobileNetV2 model.
Note
MobileNetV2 model architecture from the MobileNetV2: Inverted Residuals and Linear Bottlenecks paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mobilenet_v2 = flowvision.models.mobilenet_v2(pretrained=False, progress=True)
MobileNetV3¶
-
flowvision.models.
mobilenet_v3_large
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.mobilenet_v3.MobileNetV3[source]¶ Constructs the MobileNetV3-Large model.
Note
MobileNetV3-Large model architecture from the Searching for MobileNetV3 paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mobilenet_v3_large = flowvision.models.mobilenet_v3_large(pretrained=False, progress=True)
-
flowvision.models.
mobilenet_v3_small
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.mobilenet_v3.MobileNetV3[source]¶ Constructs the MobileNetV3-Small model.
Note
MobileNetV3-Small model architecture from the Searching for MobileNetV3 paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mobilenet_v3_small = flowvision.models.mobilenet_v3_small(pretrained=False, progress=True)
MNASNet¶
-
flowvision.models.
mnasnet0_5
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the MNASNet model with depth multiplier of 0.5.
Note
MNASNet model with depth multiplier of 0.5 from the MnasNet: Platform-Aware Neural Architecture Search for Mobile paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mnasnet0_5 = flowvision.models.mnasnet0_5(pretrained=False, progress=True)
-
flowvision.models.
mnasnet0_75
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the MNASNet model with depth multiplier of 0.75.
Note
MNASNet model with depth multiplier of 0.75 from the MnasNet: Platform-Aware Neural Architecture Search for Mobile paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mnasnet0_75 = flowvision.models.mnasnet0_75(pretrained=False, progress=True)
-
flowvision.models.
mnasnet1_0
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the MNASNet model with depth multiplier of 1.0.
Note
MNASNet model with depth multiplier of 1.0 from the MnasNet: Platform-Aware Neural Architecture Search for Mobile paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mnasnet1_0 = flowvision.models.mnasnet1_0(pretrained=False, progress=True)
-
flowvision.models.
mnasnet1_3
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the MNASNet model with depth multiplier of 1.3.
Note
MNASNet model with depth multiplier of 1.3 from the MnasNet: Platform-Aware Neural Architecture Search for Mobile paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mnasnet1_3 = flowvision.models.mnasnet1_3(pretrained=False, progress=True)
GhostNet¶
-
flowvision.models.
ghostnet
(pretrained: bool = False, progress: bool = True, **kwargs: Any)[source]¶ Constructs the GhostNet model.
Note
GhostNet model from GhostNet: More Features from Cheap Operations.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> ghostnet = flowvision.models.ghostnet(pretrained=True, progress=True)
Res2Net¶
-
flowvision.models.
res2net101_26w_4s
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Res2Net-101_26w_4s model.
Note
Res2Net-101_26w_4s model from the Res2Net: A New Multi-scale Backbone Architecture paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> res2net101_26w_4s = flowvision.models.res2net101_26w_4s(pretrained=False, progress=True)
-
flowvision.models.
res2net50_14w_8s
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Res2Net-50_14w_8s model.
Note
Res2Net-50_14w_8s model from the Res2Net: A New Multi-scale Backbone Architecture paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> res2net50_14w_8s = flowvision.models.res2net50_14w_8s(pretrained=False, progress=True)
-
flowvision.models.
res2net50_26w_4s
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Res2Net-50_26w_4s model.
Note
Res2Net-50_26w_4s model from the Res2Net: A New Multi-scale Backbone Architecture paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> res2net50_26w_4s = flowvision.models.res2net50_26w_4s(pretrained=False, progress=True)
-
flowvision.models.
res2net50_26w_6s
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Res2Net-50_26w_6s model.
Note
Res2Net-50_26w_6s model from the Res2Net: A New Multi-scale Backbone Architecture paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> res2net50_26w_6s = flowvision.models.res2net50_26w_6s(pretrained=False, progress=True)
-
flowvision.models.
res2net50_26w_8s
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Res2Net-50_26w_8s model.
Note
Res2Net-50_26w_8s model from the Res2Net: A New Multi-scale Backbone Architecture paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> res2net50_26w_8s = flowvision.models.res2net50_26w_8s(pretrained=False, progress=True)
-
flowvision.models.
res2net50_48w_2s
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Res2Net-50_48w_2s model.
Note
Res2Net-50_48w_2s model from the Res2Net: A New Multi-scale Backbone Architecture paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> res2net50_48w_2s = flowvision.models.res2net50_48w_2s(pretrained=False, progress=True)
EfficientNet¶
-
flowvision.models.
efficientnet_b0
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.efficientnet.EfficientNet[source]¶ Constructs the EfficientNet B0 model.
Note
EfficientNet B0 model architecture from the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper. Note that the (resize-size, crop-size) should be (256, 224) for efficientnet-b0 model when training and testing.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> efficientnet_b0 = flowvision.models.efficientnet_b0(pretrained=False, progress=True)
-
flowvision.models.
efficientnet_b1
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.efficientnet.EfficientNet[source]¶ Constructs the EfficientNet B1 model.
Note
EfficientNet B1 model architecture from the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper. Note that the (resize-size, crop-size) should be (256, 240) for efficientnet-b1 model when training and testing.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> efficientnet_b1 = flowvision.models.efficientnet_b1(pretrained=False, progress=True)
-
flowvision.models.
efficientnet_b2
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.efficientnet.EfficientNet[source]¶ Constructs the EfficientNet B2 model.
Note
EfficientNet B2 model architecture from the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper. Note that the (resize-size, crop-size) should be (288, 288) for efficientnet-b2 model when training and testing.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> efficientnet_b2 = flowvision.models.efficientnet_b2(pretrained=False, progress=True)
-
flowvision.models.
efficientnet_b3
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.efficientnet.EfficientNet[source]¶ Constructs the EfficientNet B3 model.
Note
EfficientNet B3 model architecture from the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper. Note that the (resize-size, crop-size) should be (320, 300) for efficientnet-b3 model when training and testing.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> efficientnet_b3 = flowvision.models.efficientnet_b3(pretrained=False, progress=True)
-
flowvision.models.
efficientnet_b4
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.efficientnet.EfficientNet[source]¶ Constructs the EfficientNet B4 model.
Note
EfficientNet B4 model architecture from the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper. Note that the (resize-size, crop-size) should be (384, 380) for efficientnet-b4 model when training and testing.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> efficientnet_b4 = flowvision.models.efficientnet_b4(pretrained=False, progress=True)
-
flowvision.models.
efficientnet_b5
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.efficientnet.EfficientNet[source]¶ Constructs the EfficientNet B5 model.
Note
EfficientNet B5 model architecture from the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper. Note that the (resize-size, crop-size) should be (489, 456) for efficientnet-b5 model when training and testing.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> efficientnet_b5 = flowvision.models.efficientnet_b5(pretrained=False, progress=True)
-
flowvision.models.
efficientnet_b6
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.efficientnet.EfficientNet[source]¶ Constructs the EfficientNet B6 model.
Note
EfficientNet B6 model architecture from the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper. Note that the (resize-size, crop-size) should be (561, 528) for efficientnet-b6 model when training and testing.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> efficientnet_b6 = flowvision.models.efficientnet_b6(pretrained=False, progress=True)
-
flowvision.models.
efficientnet_b7
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.efficientnet.EfficientNet[source]¶ Constructs the EfficientNet B7 model.
Note
EfficientNet B7 model architecture from the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper. Note that the (resize-size, crop-size) should be (633, 600) for efficientnet-b7 model when training and testing.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> efficientnet_b7 = flowvision.models.efficientnet_b7(pretrained=False, progress=True)
RegNet¶
-
flowvision.models.
regnet_x_16gf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetX-16GF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_x_16gf = flowvision.models.regnet_x_16gf(pretrained=False, progress=True)
-
flowvision.models.
regnet_x_1_6gf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetX-1.6GF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_x_1_6gf = flowvision.models.regnet_x_1_6gf(pretrained=False, progress=True)
-
flowvision.models.
regnet_x_32gf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetX-32GF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_x_32gf = flowvision.models.regnet_x_32gf(pretrained=False, progress=True)
-
flowvision.models.
regnet_x_3_2gf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetX-3.2GF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_x_3_2gf = flowvision.models.regnet_x_3_2gf(pretrained=False, progress=True)
-
flowvision.models.
regnet_x_400mf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetX-400MF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_x_400mf = flowvision.models.regnet_x_400mf(pretrained=False, progress=True)
-
flowvision.models.
regnet_x_800mf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetX-800MF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_x_800mf = flowvision.models.regnet_x_800mf(pretrained=False, progress=True)
-
flowvision.models.
regnet_x_8gf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetX-8GF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_x_8gf = flowvision.models.regnet_x_8gf(pretrained=False, progress=True)
-
flowvision.models.
regnet_y_16gf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetY-16GF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_y_16gf = flowvision.models.regnet_y_16gf(pretrained=False, progress=True)
-
flowvision.models.
regnet_y_1_6gf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetY-1.6GF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_y_1_6gf = flowvision.models.regnet_y_1_6gf(pretrained=False, progress=True)
-
flowvision.models.
regnet_y_32gf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetY-32GF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_y_32gf = flowvision.models.regnet_y_32gf(pretrained=False, progress=True)
-
flowvision.models.
regnet_y_3_2gf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetY-3.2GF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_y_3_2gf = flowvision.models.regnet_y_3_2gf(pretrained=False, progress=True)
-
flowvision.models.
regnet_y_400mf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetY-400MF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_y_400mf = flowvision.models.regnet_y_400mf(pretrained=False, progress=True)
-
flowvision.models.
regnet_y_800mf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetY-800MF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_y_800mf = flowvision.models.regnet_y_800mf(pretrained=False, progress=True)
-
flowvision.models.
regnet_y_8gf
(pretrained: bool = False, progress: bool = True, **kwargs: Any) → flowvision.models.regnet.RegNet[source]¶ Constructs a RegNetY-8GF architecture from “Designing Network Design Spaces”.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regnet_y_8gf = flowvision.models.regnet_y_8gf(pretrained=False, progress=True)
ReXNet¶
-
flowvision.models.
rexnetv1_1_0
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ReXNet model with width multiplier of 1.0.
Note
ReXNet model with width multiplier of 1.0 from the Rethinking Channel Dimensions for Efficient Model Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> rexnetv1_1_0 = flowvision.models.rexnetv1_1_0(pretrained=False, progress=True)
-
flowvision.models.
rexnetv1_1_3
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ReXNet model with width multiplier of 1.3.
Note
ReXNet model with width multiplier of 1.3 from the Rethinking Channel Dimensions for Efficient Model Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> rexnetv1_1_3 = flowvision.models.rexnetv1_1_3(pretrained=False, progress=True)
-
flowvision.models.
rexnetv1_1_5
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ReXNet model with width multiplier of 1.5.
Note
ReXNet model with width multiplier of 1.5 from the Rethinking Channel Dimensions for Efficient Model Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> rexnetv1_1_5 = flowvision.models.rexnetv1_1_5(pretrained=False, progress=True)
-
flowvision.models.
rexnetv1_2_0
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ReXNet model with width multiplier of 2.0.
Note
ReXNet model with width multiplier of 2.0 from the Rethinking Channel Dimensions for Efficient Model Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> rexnetv1_2_0 = flowvision.models.rexnetv1_2_0(pretrained=False, progress=True)
-
flowvision.models.
rexnetv1_3_0
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ReXNet model with width multiplier of 3.0.
Note
ReXNet model with width multiplier of 3.0 from the Rethinking Channel Dimensions for Efficient Model Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> rexnetv1_3_0 = flowvision.models.rexnetv1_3_0(pretrained=False, progress=True)
-
flowvision.models.
rexnet_lite_1_0
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ReXNet-lite model with width multiplier of 1.0.
Note
ReXNet-lite model with width multiplier of 1.0 from the Rethinking Channel Dimensions for Efficient Model Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> rexnet_lite_1_0 = flowvision.models.rexnet_lite_1_0(pretrained=False, progress=True)
-
flowvision.models.
rexnet_lite_1_3
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ReXNet-lite model with width multiplier of 1.3.
Note
ReXNet-lite model with width multiplier of 1.3 from the Rethinking Channel Dimensions for Efficient Model Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> rexnet_lite_1_3 = flowvision.models.rexnet_lite_1_3(pretrained=False, progress=True)
-
flowvision.models.
rexnet_lite_1_5
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ReXNet-lite model with width multiplier of 1.5.
Note
ReXNet-lite model with width multiplier of 1.5 from the Rethinking Channel Dimensions for Efficient Model Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> rexnet_lite_1_5 = flowvision.models.rexnet_lite_1_5(pretrained=False, progress=True)
-
flowvision.models.
rexnet_lite_2_0
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ReXNet-lite model with width multiplier of 2.0.
Note
ReXNet-lite model with width multiplier of 2.0 from the Rethinking Channel Dimensions for Efficient Model Design paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> rexnet_lite_2_0 = flowvision.models.rexnet_lite_2_0(pretrained=False, progress=True)
SENet¶
-
flowvision.models.
se_resnet101
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the SE-ResNet101 model trained on ImageNet2012.
Note
SE-ResNet101 model from Squeeze-and-Excitation Networks. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> se_resnet101 = flowvision.models.se_resnet101(pretrained=False, progress=True)
-
flowvision.models.
se_resnet152
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the SE-ResNet152 model trained on ImageNet2012.
Note
SE-ResNet152 model Squeeze-and-Excitation Networks. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> se_resnet152 = flowvision.models.se_resnet152(pretrained=False, progress=True)
-
flowvision.models.
se_resnet50
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the SE-ResNet50 model trained on ImageNet2012.
Note
SE-ResNet50 model from Squeeze-and-Excitation Networks. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> se_resnet50 = flowvision.models.se_resnet50(pretrained=False, progress=True)
-
flowvision.models.
se_resnext101_32x4d
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the SE-ResNeXt101-32x4d model trained on ImageNet2012.
Note
SE-ResNeXt101-32x4d model from Squeeze-and-Excitation Networks. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> se_resnext101_32x4d = flowvision.models.se_resnext101_32x4d(pretrained=False, progress=True)
-
flowvision.models.
se_resnext50_32x4d
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the SE-ResNeXt50-32x4d model trained on ImageNet2012.
Note
SE-ResNeXt50-32x4d model from Squeeze-and-Excitation Networks. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> se_resnext50_32x4d = flowvision.models.se_resnext50_32x4d(pretrained=False, progress=True)
-
flowvision.models.
senet154
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the SENet-154 model trained on ImageNet2012.
Note
seneSENet-154t154 model from Squeeze-and-Excitation Networks. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> senet154 = flowvision.models.senet154(pretrained=False, progress=True)
ViT¶
-
flowvision.models.
vit_base_patch16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch16-224 model.
Note
ViT-Base-patch16-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch16_224 = flowvision.models.vit_base_patch16_224(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch16_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch16-224 ImageNet21k pretrained model.
Note
ViT-Base-patch16-224 ImageNet21k pretrained model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch16_224_in21k = flowvision.models.vit_base_patch16_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch16_224_miil
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch16-224-miil model.
Note
ViT-Base-patch16-224-miil model from “Training data-efficient image transformers & distillation through attention”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch16_224_miil = flowvision.models.vit_base_patch16_224_miil(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch16_224_miil_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch16-224-miil ImageNet21k pretrained model.
Note
ViT-Base-patch16-224-miil ImageNet21k pretrained model from “Training data-efficient image transformers & distillation through attention”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch16_224_miil_in21k = flowvision.models.vit_base_patch16_224_miil_in21k(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch16_224_sam
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch16-224-sam model.
Note
ViT-Base-patch16-224-sam model from “When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch16_224_sam = flowvision.models.vit_base_patch16_224_sam(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch16_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch16-384 model.
Note
ViT-Base-patch16-384 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch16_384 = flowvision.models.vit_base_patch16_384(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch32_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch32-224 model.
Note
ViT-Base-patch32-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch32_224 = flowvision.models.vit_base_patch32_224(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch32_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch32-224 ImageNet21k pretrained model.
Note
ViT-Base-patch32-224 ImageNet21k pretrained model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch32_224_in21k = flowvision.models.vit_base_patch32_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch32_224_sam
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch32-224-sam model.
Note
ViT-Base-patch32-224-sam model from “When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch32_224_sam = flowvision.models.vit_base_patch32_224_sam(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch32_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch32-384 model.
Note
ViT-Base-patch32-384 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch32_384 = flowvision.models.vit_base_patch32_384(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch8_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch8-224 model.
Note
ViT-Base-patch8-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch8_224 = flowvision.models.vit_base_patch8_224(pretrained=False, progress=True)
-
flowvision.models.
vit_base_patch8_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Base-patch8-224 ImageNet21k pretrained model.
Note
ViT-Base-patch8-224 ImageNet21k pretrained model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_base_patch8_224_in21k = flowvision.models.vit_base_patch8_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
vit_giant_patch14_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Giant-patch14-224 model.
Note
ViT-Giant-patch14-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_giant_patch14_224 = flowvision.models.vit_giant_patch14_224(pretrained=False, progress=True)
-
flowvision.models.
vit_gigantic_patch14_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Gigantic-patch14-224 model.
Note
ViT-Giant-patch14-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_gigantic_patch14_224 = flowvision.models.vit_gigantic_patch14_224(pretrained=False, progress=True)
-
flowvision.models.
vit_huge_patch14_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Huge-patch14-224 model.
Note
ViT-Huge-patch14-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_huge_patch14_224 = flowvision.models.vit_huge_patch14_224(pretrained=False, progress=True)
-
flowvision.models.
vit_huge_patch14_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Huge-patch14-224 ImageNet21k pretrained model.
Note
ViT-Huge-patch14-224 ImageNet21k pretrained model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_huge_patch14_224_in21k = flowvision.models.vit_huge_patch14_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
vit_large_patch16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Large-patch16-224 model.
Note
ViT-Large-patch16-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_large_patch16_224 = flowvision.models.vit_large_patch16_224(pretrained=False, progress=True)
-
flowvision.models.
vit_large_patch16_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Large-patch16-224 ImageNet21k pretrained model.
Note
ViT-Large-patch16-224 ImageNet21k pretrained model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_large_patch16_224_in21k = flowvision.models.vit_large_patch16_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
vit_large_patch16_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Large-patch16-384 model.
Note
ViT-Large-patch16-384 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_large_patch16_384 = flowvision.models.vit_large_patch16_384(pretrained=False, progress=True)
-
flowvision.models.
vit_large_patch32_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Large-patch32-224 model.
Note
ViT-Large-patch32-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_large_patch32_224 = flowvision.models.vit_large_patch32_224(pretrained=False, progress=True)
-
flowvision.models.
vit_large_patch32_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Large-patch32-224 ImageNet21k pretrained model.
Note
ViT-Large-patch32-224 ImageNet21k pretrained model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_large_patch32_224_in21k = flowvision.models.vit_large_patch32_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
vit_large_patch32_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Large-patch32-384 model.
Note
ViT-Large-patch32-384 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_large_patch32_384 = flowvision.models.vit_large_patch32_384(pretrained=False, progress=True)
-
flowvision.models.
vit_small_patch16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Small-patch16-224 model.
Note
ViT-Small-patch16-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_small_patch16_224 = flowvision.models.vit_small_patch16_224(pretrained=False, progress=True)
-
flowvision.models.
vit_small_patch16_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Small-patch16-224 ImageNet21k pretrained model.
Note
ViT-Small-patch16-224 ImageNet21k pretrained model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_small_patch16_224_in21k = flowvision.models.vit_small_patch16_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
vit_small_patch16_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Small-patch16-384 model.
Note
ViT-Small-patch16-384 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_small_patch16_384 = flowvision.models.vit_small_patch16_384(pretrained=False, progress=True)
-
flowvision.models.
vit_small_patch32_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Small-patch32-224 model.
Note
ViT-Small-patch32-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_small_patch32_224 = flowvision.models.vit_small_patch32_224(pretrained=False, progress=True)
-
flowvision.models.
vit_small_patch32_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Small-patch32-224 ImageNet21k pretrained model.
Note
ViT-Small-patch32-224 ImageNet21k pretrained model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_small_patch32_224_in21k = flowvision.models.vit_small_patch32_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
vit_small_patch32_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Small-patch32-384 model.
Note
ViT-Small-patch32-384 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_small_patch32_384 = flowvision.models.vit_small_patch32_384(pretrained=False, progress=True)
-
flowvision.models.
vit_tiny_patch16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Tiny-patch16-224 model.
Note
ViT-Tiny-patch16-224 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_tiny_patch16_224 = flowvision.models.vit_tiny_patch16_224(pretrained=False, progress=True)
-
flowvision.models.
vit_tiny_patch16_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Tiny-patch16-224 ImageNet21k pretrained model.
Note
ViT-Tiny-patch16-224 ImageNet21k pretrained model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_tiny_patch16_224_in21k = flowvision.models.vit_tiny_patch16_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
vit_tiny_patch16_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ViT-Tiny-patch16-384 model.
Note
ViT-Tiny-patch16-384 model from “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> vit_tiny_patch16_384 = flowvision.models.vit_tiny_patch16_384(pretrained=False, progress=True)
DeiT¶
-
flowvision.models.
deit_base_distilled_patch16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Base-patch16-224 distilled model.
Note
DeiT-Base-patch16-224 distilled model from “Training data-efficient image transformers & distillation through attention”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_base_distilled_patch16_224 = flowvision.models.deit_base_distilled_patch16_224(pretrained=False, progress=True)
-
flowvision.models.
deit_base_distilled_patch16_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Base-patch16-384 distilled model.
Note
DeiT-Base-patch16-384 distilled model from “Training data-efficient image transformers & distillation through attention”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_base_distilled_patch16_384 = flowvision.models.deit_base_distilled_patch16_384(pretrained=False, progress=True)
-
flowvision.models.
deit_base_patch16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Base-patch16-224 model.
Note
DeiT-Base-patch16-224 model from “Training data-efficient image transformers & distillation through attention”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_base_patch16_224 = flowvision.models.deit_base_patch16_224(pretrained=False, progress=True)
-
flowvision.models.
deit_base_patch16_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Base-patch16-384 model.
Note
DeiT-Base-patch16-384 model from “Training data-efficient image transformers & distillation through attention”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_base_patch16_384 = flowvision.models.deit_base_patch16_384(pretrained=False, progress=True)
-
flowvision.models.
deit_small_distilled_patch16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Small-patch16-224 distilled model.
Note
DeiT-Small-patch16-224 distilled model from “Training data-efficient image transformers & distillation through attention”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_small_distilled_patch16_224 = flowvision.models.deit_small_distilled_patch16_224(pretrained=False, progress=True)
-
flowvision.models.
deit_small_patch16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Small-patch16-224 model.
Note
DeiT-Small-patch16-224 model from “Training data-efficient image transformers & distillation through attention”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_small_patch16_224 = flowvision.models.deit_small_patch16_224(pretrained=False, progress=True)
-
flowvision.models.
deit_tiny_distilled_patch16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Tiny-patch16-224 distilled model.
Note
DeiT-Tiny-patch16-224 distilled model from “Training data-efficient image transformers & distillation through attention”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_tiny_distilled_patch16_224 = flowvision.models.deit_tiny_distilled_patch16_224(pretrained=False, progress=True)
-
flowvision.models.
deit_tiny_patch16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Tiny-patch16-224 model.
Note
DeiT-Tiny-patch16-224 model from “Training data-efficient image transformers & distillation through attention”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_tiny_patch16_224 = flowvision.models.deit_tiny_patch16_224(pretrained=False, progress=True)
PVT¶
-
flowvision.models.
pvt_large
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the PVT-large model.
Note
PVT-large model from “Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> pvt_large = flowvision.models.pvt_large(pretrained=False, progress=True)
-
flowvision.models.
pvt_medium
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the PVT-medium model.
Note
PVT-medium model from “Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> pvt_medium = flowvision.models.pvt_medium(pretrained=False, progress=True)
-
flowvision.models.
pvt_small
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the PVT-small model.
Note
PVT-small model from “Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> pvt_small = flowvision.models.pvt_small(pretrained=False, progress=True)
-
flowvision.models.
pvt_tiny
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the PVT-tiny model.
Note
PVT-tiny model from “Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> pvt_tiny = flowvision.models.pvt_tiny(pretrained=False, progress=True)
Swin-Transformer¶
-
flowvision.models.
swin_base_patch4_window12_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs Swin-B 384x384 model trained on ImageNet-1k.
Note
Swin-B 384x384 model from “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> swin_base_patch4_window12_384 = flowvision.models.swin_base_patch4_window12_384(pretrained=False, progress=True)
-
flowvision.models.
swin_base_patch4_window12_384_in22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs Swin-B 384x384 model pretrained on ImageNet-22k and fine tuned on ImageNet-1k.
Note
Swin-B 384x384 model from “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> swin_base_patch4_window12_384_in22k_to_1k = flowvision.models.swin_base_patch4_window12_384_in22k_to_1k(pretrained=False, progress=True)
-
flowvision.models.
swin_base_patch4_window7_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs Swin-B 224x224 model trained on ImageNet-1k.
Note
Swin-B 224x224 model from “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> swin_base_patch4_window7_224 = flowvision.models.swin_base_patch4_window7_224(pretrained=False, progress=True)
-
flowvision.models.
swin_base_patch4_window7_224_in22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs Swin-B 224x224 model pretrained on ImageNet-22k and fine tuned on ImageNet-1k.
Note
Swin-B 224x224 model from “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> swin_base_patch4_window7_224_in22k_to_1k = flowvision.models.swin_base_patch4_window7_224_in22k_to_1k(pretrained=False, progress=True)
-
flowvision.models.
swin_large_patch4_window12_384_in22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs Swin-L 384x384 model pretrained on ImageNet-22k and fine tuned on ImageNet-1k.
Note
Swin-L 384x384 model from “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> swin_large_patch4_window12_384_in22k_to_1k = flowvision.models.swin_large_patch4_window12_384_in22k_to_1k(pretrained=False, progress=True)
-
flowvision.models.
swin_large_patch4_window7_224_in22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs Swin-L 224x224 model pretrained on ImageNet-22k and fine tuned on ImageNet-1k.
Note
Swin-L 224x224 model from “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> swin_large_patch4_window7_224_in22k_to_1k = flowvision.models.swin_large_patch4_window7_224_in22k_to_1k(pretrained=False, progress=True)
-
flowvision.models.
swin_small_patch4_window7_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs Swin-S 224x224 model trained on ImageNet-1k.
Note
Swin-S 224x224 model from “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> swin_small_patch4_window7_224 = flowvision.models.swin_small_patch4_window7_224(pretrained=False, progress=True)
-
flowvision.models.
swin_tiny_patch4_window7_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs Swin-T 224x224 model trained on ImageNet-1k.
Note
Swin-T 224x224 model from “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> swin_tiny_patch4_window7_224 = flowvision.models.swin_tiny_patch4_window7_224(pretrained=False, progress=True)
CSwin-Transformer¶
-
flowvision.models.
cswin_base_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs CSwin-B 224x224 model.
Note
CSwin-B 224x224 model from “CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cswin_base_224 = flowvision.models.cswin_base_224(pretrained=False, progress=True)
-
flowvision.models.
cswin_base_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs CSwin-B 384x384 model.
Note
CSwin-B 384x384 model from “CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cswin_base_384 = flowvision.models.cswin_base_384(pretrained=False, progress=True)
-
flowvision.models.
cswin_large_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs CSwin-L 224x224 model.
Note
CSwin-L 224x224 model from “CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cswin_large_224 = flowvision.models.cswin_large_224(pretrained=False, progress=True)
-
flowvision.models.
cswin_large_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs CSwin-L 384x384 model.
Note
CSwin-L 384x384 model from “CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cswin_large_384 = flowvision.models.cswin_large_384(pretrained=False, progress=True)
-
flowvision.models.
cswin_small_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs CSwin-S 224x224 model.
Note
CSwin-S 224x224 model from “CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cswin_small_224 = flowvision.models.cswin_small_224(pretrained=False, progress=True)
-
flowvision.models.
cswin_tiny_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs CSwin-T 224x224 model.
Note
CSwin-T 224x224 model from “CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cswin_tiny_224 = flowvision.models.cswin_tiny_224(pretrained=False, progress=True)
CrossFormer¶
-
flowvision.models.
crossformer_base_patch4_group7_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs CrossFormer-B 224x224 model.
Note
CrossFormer-B 224x224 model from “CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> crossformer_base_patch4_group7_224 = flowvision.models.crossformer_base_patch4_group7_224(pretrained=False, progress=True)
-
flowvision.models.
crossformer_large_patch4_group7_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs CrossFormer-L 224x224 model.
Note
CrossFormer-L 224x224 model from “CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> crossformer_large_patch4_group7_224 = flowvision.models.crossformer_large_patch4_group7_224(pretrained=False, progress=True)
-
flowvision.models.
crossformer_small_patch4_group7_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs CrossFormer-S 224x224 model.
Note
CrossFormer-S 224x224 model from “CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> crossformer_small_patch4_group7_224 = flowvision.models.crossformer_small_patch4_group7_224(pretrained=False, progress=True)
-
flowvision.models.
crossformer_tiny_patch4_group7_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs CrossFormer-T 224x224 model.
Note
CrossFormer-T 224x224 model from “CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> crossformer_tiny_patch4_group7_224 = flowvision.models.crossformer_tiny_patch4_group7_224(pretrained=False, progress=True)
PoolFormer¶
-
flowvision.models.
poolformer_m36
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the PoolFormer-M36 model.
Note
PoolFormer-M36 model. From “MetaFormer is Actually What You Need for Vision” <https://arxiv.org/abs/2111.11418> _.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> poolformer_m36 = flowvision.models.poolformer_m36(pretrained=False, progress=True)
-
flowvision.models.
poolformer_m48
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the PoolFormer-M48 model.
Note
PoolFormer-M48 model. From “MetaFormer is Actually What You Need for Vision” <https://arxiv.org/abs/2111.11418> _.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> poolformer_m48 = flowvision.models.poolformer_m48(pretrained=False, progress=True)
-
flowvision.models.
poolformer_s12
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the PoolFormer-S12 model.
Note
PoolFormer-S12 model. From “MetaFormer is Actually What You Need for Vision” <https://arxiv.org/abs/2111.11418> _.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> poolformer_s12 = flowvision.models.poolformer_s12(pretrained=False, progress=True)
-
flowvision.models.
poolformer_s24
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the PoolFormer-S24 model.
Note
PoolFormer-S24 model. From “MetaFormer is Actually What You Need for Vision” <https://arxiv.org/abs/2111.11418> _.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> poolformer_s24 = flowvision.models.poolformer_s24(pretrained=False, progress=True)
-
flowvision.models.
poolformer_s36
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the PoolFormer-S36 model.
Note
PoolFormer-S36 model. From “MetaFormer is Actually What You Need for Vision” <https://arxiv.org/abs/2111.11418> _.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> poolformer_s36 = flowvision.models.poolformer_s36(pretrained=False, progress=True)
UniFormer¶
-
flowvision.models.
uniformer_base
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the UniFormer-Base model.
Note
- UniFormer-Base model from UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning -
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> uniformer_base= flowvision.models.uniformer_base(pretrained=False, progress=True)
-
flowvision.models.
uniformer_base_ls
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the UniFormer-Base-Ls model.
Note
- UniFormer-Base-Ls model from UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning -
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> uniformer_base_ls = flowvision.models.uniformer_base_ls(pretrained=False, progress=True)
-
flowvision.models.
uniformer_small
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the UniFormer-Small model.
Note
- UniFormer-Small model from UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning -
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> uniformer_small = flowvision.models.uniformer_small(pretrained=False, progress=True)
-
flowvision.models.
uniformer_small_plus
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the UniFormer-Small-Plus model.
Note
- UniFormer-Small-Plus model from UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning -
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> uniformer_small_plus = flowvision.models.uniformer_small_plus(pretrained=False, progress=True)
Mlp-Mixer¶
-
flowvision.models.
mlp_mixer_b16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Mixer-B/16 224x224 model.
Note
Mixer-B/16 224x224 model from “MLP-Mixer: An all-MLP Architecture for Vision”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mlp_mixer_b16_224 = flowvision.models.mlp_mixer_b16_224(pretrained=False, progress=True)
-
flowvision.models.
mlp_mixer_b16_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Mixer-B/16 224x224 ImageNet21k pretrained model.
Note
Mixer-B/16 224x224 ImageNet21k pretrained model from “MLP-Mixer: An all-MLP Architecture for Vision”. Note that this model is the pretrained model for fine-tune on different datasets.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mlp_mixer_b16_224_in21k = flowvision.models.mlp_mixer_b16_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
mlp_mixer_b16_224_miil
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Mixer-B/16 224x224 model with different weights.
Note
Mixer-B/16 224x224 model from “MLP-Mixer: An all-MLP Architecture for Vision”. Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mlp_mixer_b16_224_miil = flowvision.models.mlp_mixer_b16_224_miil(pretrained=False, progress=True)
-
flowvision.models.
mlp_mixer_b16_224_miil_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Mixer-B/16 224x224 ImageNet21k pretrained model.
Note
Mixer-B/16 224x224 ImageNet21k pretrained model from “MLP-Mixer: An all-MLP Architecture for Vision”. Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mlp_mixer_b16_224_miil_in21k = flowvision.models.mlp_mixer_b16_224_miil_in21k(pretrained=False, progress=True)
-
flowvision.models.
mlp_mixer_b32_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Mixer-B/32 224x224 model.
Note
Mixer-B/32 224x224 model from “MLP-Mixer: An all-MLP Architecture for Vision”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mlp_mixer_b32_224 = flowvision.models.mlp_mixer_b32_224(pretrained=False, progress=True)
-
flowvision.models.
mlp_mixer_l16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Mixer-L/16 224x224 model.
Note
Mixer-L/16 224x224 model from “MLP-Mixer: An all-MLP Architecture for Vision”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mlp_mixer_l16_224 = flowvision.models.mlp_mixer_l16_224(pretrained=False, progress=True)
-
flowvision.models.
mlp_mixer_l16_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Mixer-L/16 224x224 ImageNet21k pretrained model.
Note
Mixer-L/16 224x224 ImageNet21k pretrained model from “MLP-Mixer: An all-MLP Architecture for Vision”. Note that this model is the pretrained model for fine-tune on different datasets.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mlp_mixer_l16_224_in21k = flowvision.models.mlp_mixer_l16_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
mlp_mixer_l32_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Mixer-L/32 224x224 model.
Note
Mixer-L/32 224x224 model from “MLP-Mixer: An all-MLP Architecture for Vision”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mlp_mixer_l32_224 = flowvision.models.mlp_mixer_l32_224(pretrained=False, progress=True)
-
flowvision.models.
mlp_mixer_s16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Mixer-S/16 224x224 model.
Note
Mixer-S/16 224x224 model from “MLP-Mixer: An all-MLP Architecture for Vision”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mlp_mixer_s16_224 = flowvision.models.mlp_mixer_s16_224(pretrained=False, progress=True)
-
flowvision.models.
mlp_mixer_s32_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the Mixer-S/32 224x224 model.
Note
Mixer-S/32 224x224 model from “MLP-Mixer: An all-MLP Architecture for Vision”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mlp_mixer_s32_224 = flowvision.models.mlp_mixer_s32_224(pretrained=False, progress=True)
ResMLP¶
-
flowvision.models.
resmlp_12_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResMLP-12 model.
Note
ResMLP-12 model from “ResMLP: Feedforward networks for image classification with data-efficient training”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_12_224 = flowvision.models.resmlp_12_224(pretrained=False, progress=True)
-
flowvision.models.
resmlp_12_224_dino
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResMLP-12 model trained under DINO proposed in “Emerging Properties in Self-Supervised Vision Transformers”.
Note
ResMLP-12 model with distillation from “ResMLP: Feedforward networks for image classification with data-efficient training”. Note that this model is the same as resmlp_12 but the pretrained weight is different.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_12_224_dino = flowvision.models.resmlp_12_224_dino(pretrained=False, progress=True)
-
flowvision.models.
resmlp_12_distilled_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResMLP-12 model with distillation.
Note
ResMLP-12 model with distillation from “ResMLP: Feedforward networks for image classification with data-efficient training”. Note that this model is the same as resmlp_12 but the pretrained weight is different.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_12_distilled_224 = flowvision.models.resmlp_12_distilled_224(pretrained=False, progress=True)
-
flowvision.models.
resmlp_24_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResMLP-24 model.
Note
ResMLP-24 model from “ResMLP: Feedforward networks for image classification with data-efficient training”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_24_224 = flowvision.models.resmlp_24_224(pretrained=False, progress=True)
-
flowvision.models.
resmlp_24_224_dino
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResMLP-24 model trained under DINO proposed in “Emerging Properties in Self-Supervised Vision Transformers”.
Note
ResMLP-24 model with distillation from “ResMLP: Feedforward networks for image classification with data-efficient training”. Note that this model is the same as resmlp_24 but the pretrained weight is different.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_24_224_dino = flowvision.models.resmlp_24_224_dino(pretrained=False, progress=True)
-
flowvision.models.
resmlp_24_distilled_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResMLP-24 model with distillation.
Note
ResMLP-24 model with distillation from “ResMLP: Feedforward networks for image classification with data-efficient training”. Note that this model is the same as resmlp_24 but the pretrained weight is different.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_24_distilled_224 = flowvision.models.resmlp_24_distilled_224(pretrained=False, progress=True)
-
flowvision.models.
resmlp_36_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResMLP-36 model.
Note
ResMLP-36 model from “ResMLP: Feedforward networks for image classification with data-efficient training”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_36_224 = flowvision.models.resmlp_36_224(pretrained=False, progress=True)
-
flowvision.models.
resmlp_36_distilled_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResMLP-36 model with distillation.
Note
ResMLP-36 model with distillation from “ResMLP: Feedforward networks for image classification with data-efficient training”. Note that this model is the same as resmlp_36 but the pretrained weight is different.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_36_distilled_224 = flowvision.models.resmlp_36_distilled_224(pretrained=False, progress=True)
-
flowvision.models.
resmlp_big_24_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResMLP-Big-24 model.
Note
ResMLP-Big-24 model from “ResMLP: Feedforward networks for image classification with data-efficient training”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_big_24_224 = flowvision.models.resmlp_big_24_224(pretrained=False, progress=True)
-
flowvision.models.
resmlp_big_24_224_in22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ImageNet22k pretrained ResMLP-B-24 model.
Note
ImageNet22k pretrained ResMLP-B-24 model from “ResMLP: Feedforward networks for image classification with data-efficient training”. Note that this model is the same as resmlpB_24 but the pretrained weight is different.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_big_24_224_in22k_to_1k = flowvision.models.resmlp_big_24_224_in22k_to_1k(pretrained=False, progress=True)
-
flowvision.models.
resmlp_big_24_distilled_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ResMLP-B-24 model with distillation.
Note
ResMLP-B-24 model with distillation from “ResMLP: Feedforward networks for image classification with data-efficient training”. Note that this model is the same as resmlpB_24 but the pretrained weight is different.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> resmlp_big_24_distilled_224 = flowvision.models.resmlp_big_24_distilled_224(pretrained=False, progress=True)
gMLP¶
-
flowvision.models.
gmlp_b16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the gMLP-base-16 224x224 model.
Note
gMLP-base-16 224x224 model from “Pay Attention to MLPs”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> gmlp_b16_224 = flowvision.models.gmlp_b16_224(pretrained=False, progress=True)
-
flowvision.models.
gmlp_s16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the gMLP-small-16 224x224 model.
Note
gMLP-small-16 224x224 model from “Pay Attention to MLPs”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> gmlp_s16_224 = flowvision.models.gmlp_s16_224(pretrained=False, progress=True)
-
flowvision.models.
gmlp_ti16_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the gMLP-tiny-16 224x224 model.
Note
gMLP-tiny-16 224x224 model from “Pay Attention to MLPs”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> gmlp_ti16_224 = flowvision.models.gmlp_ti16_224(pretrained=False, progress=True)
ConvMixer¶
-
flowvision.models.
convmixer_1024_20
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs the ConvMixer model with 20 depth and 1024 hidden size.
Note
ConvMixer model with 20 depth and 1024 hidden size from the Patched Are All You Need? paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> convmixer_1024_20 = flowvision.models.convmixer_1024_20(pretrained=False, progress=True)
-
flowvision.models.
convmixer_1536_20
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs the ConvMixer model with 20 depth and 1536 hidden size.
Note
ConvMixer model with 20 depth and 1536 hidden size from the Patched Are All You Need? paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> convmixer_1536_20 = flowvision.models.convmixer_1536_20(pretrained=False, progress=True)
-
flowvision.models.
convmixer_768_32_relu
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs the ConvMixer model with 32 depth and 768 hidden size and ReLU activation layer.
Note
ConvMixer model with 32 depth and 768 hidden size and ReLU activation layer from the Patched Are All You Need? paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> convmixer_768_32_relu = flowvision.models.convmixer_768_32_relu(pretrained=False, progress=True)
ConvNeXt¶
-
flowvision.models.
convnext_base_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Base model trained on ImageNet2012.
Note
ConvNext-Base model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_base_224 = flowvision.models.convnext_base_224(pretrained=False, progress=True)
-
flowvision.models.
convnext_base_224_22k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Base model pretrained on ImageNet22k.
Note
ConvNext-Base model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_base_224_22k = flowvision.models.convnext_base_224_22k(pretrained=False, progress=True)
-
flowvision.models.
convnext_base_224_22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Base model pretrained on ImageNet22k and finetuned on ImageNet2012.
Note
ConvNext-Base model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_base_224_22k_to_1k = flowvision.models.convnext_base_224_22k_to_1k(pretrained=False, progress=True)
-
flowvision.models.
convnext_base_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Base model trained on ImageNet2012.
Note
ConvNext-Base model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_base_384 = flowvision.models.convnext_base_384(pretrained=False, progress=True)
-
flowvision.models.
convnext_base_384_22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Base model pretrained on ImageNet22k and finetuned on ImageNet2012.
Note
ConvNext-Base model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_base_384_22k_to_1k = flowvision.models.convnext_base_384_22k_to_1k(pretrained=False, progress=True)
-
flowvision.models.
convnext_iso_base_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Isotropic-Base model trained on ImageNet2012.
Note
ConvNext-Isotropic-Base model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_iso_base_224 = flowvision.models.convnext_iso_base_224(pretrained=False, progress=True)
-
flowvision.models.
convnext_iso_large_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Isotropic-Large model trained on ImageNet2012.
Note
ConvNext-Isotropic-Large model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_iso_large_224 = flowvision.models.convnext_iso_large_224(pretrained=False, progress=True)
-
flowvision.models.
convnext_iso_small_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Isotropic-Small model trained on ImageNet2012.
Note
ConvNext-Isotropic-Small model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_iso_small_224 = flowvision.models.convnext_iso_small_224(pretrained=False, progress=True)
-
flowvision.models.
convnext_large_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Large model trained on ImageNet2012.
Note
ConvNext-Large model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_large_224 = flowvision.models.convnext_large_224(pretrained=False, progress=True)
-
flowvision.models.
convnext_large_224_22k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Large model trained on ImageNet22k.
Note
ConvNext-Large model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_large_224_22k = flowvision.models.convnext_large_224_22k(pretrained=False, progress=True)
-
flowvision.models.
convnext_large_224_22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Large model pretrained on ImageNet22k and finetuned on ImageNet2012.
Note
ConvNext-Large model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_large_224_22k_to_1k = flowvision.models.convnext_large_224_22k_to_1k(pretrained=False, progress=True)
-
flowvision.models.
convnext_large_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Large model trained on ImageNet2012.
Note
ConvNext-Large model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_large_384 = flowvision.models.convnext_large_384(pretrained=False, progress=True)
-
flowvision.models.
convnext_large_384_22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Large model pretrained on ImageNet22k and finetuned on ImageNet2012.
Note
ConvNext-Large model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_large_384_22k_to_1k = flowvision.models.convnext_large_384_22k_to_1k(pretrained=False, progress=True)
-
flowvision.models.
convnext_small_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Small model trained on ImageNet2012.
Note
ConvNext-Small model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_small_224 = flowvision.models.convnext_small_224(pretrained=False, progress=True)
-
flowvision.models.
convnext_tiny_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-Tiny model trained on ImageNet2012.
Note
ConvNext-Tiny model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_tiny_224 = flowvision.models.convnext_tiny_224(pretrained=False, progress=True)
-
flowvision.models.
convnext_xlarge_224_22k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-xLarge model pretrained on ImageNet22k.
Note
ConvNext-xLarge model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_xlarge_224_22k = flowvision.models.convnext_xlarge_224_22k(pretrained=False, progress=True)
-
flowvision.models.
convnext_xlarge_224_22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-xLarge model pretrained on ImageNet22k and finetuned on ImageNet2012.
Note
ConvNext-xLarge model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_xlarge_224_22k_to_1k = flowvision.models.convnext_xlarge_224_22k_to_1k(pretrained=False, progress=True)
-
flowvision.models.
convnext_xlarge_384_22k_to_1k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the ConvNext-xLarge model pretrained on ImageNet22k and finetuned on ImageNet2012.
Note
ConvNext-xLarge model from “A ConvNet for the 2020s” <https://arxiv.org/abs/2201.03545> _. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderrt. Default:
True
For example:
>>> import flowvision >>> convnext_xlarge_384_22k_to_1k = flowvision.models.convnext_xlarge_384_22k_to_1k(pretrained=False, progress=True)
RegionViT¶
-
flowvision.models.
regionvit_base_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the RegionViT-Base-224 model.
Note
RegionViT-Base-224 model from “RegionViT: Regional-to-Local Attention for Vision Transformers”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regionvit_base_224 = flowvision.models.regionvit_base_224(pretrained=False, progress=True)
-
flowvision.models.
regionvit_base_w14_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the RegionViT-Base-w14-224 model.
Note
RegionViT-Base-w14-224 model from “RegionViT: Regional-to-Local Attention for Vision Transformers”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regionvit_base_w14_224 = flowvision.models.regionvit_base_w14_224(pretrained=False, progress=True)
-
flowvision.models.
regionvit_base_w14_peg_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the RegionViT-Base-w14-peg-224 model.
Note
RegionViT-Base-w14-peg-224 model from “RegionViT: Regional-to-Local Attention for Vision Transformers”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regionvit_base_w14_peg_224 = flowvision.models.regionvit_base_w14_peg_224(pretrained=False, progress=True)
-
flowvision.models.
regionvit_medium_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the RegionViT-Medium-224 model.
Note
RegionViT-Medium-224 model from “RegionViT: Regional-to-Local Attention for Vision Transformers”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regionvit_medium_224 = flowvision.models.regionvit_medium_224(pretrained=False, progress=True)
-
flowvision.models.
regionvit_small_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the RegionViT-Small-224 model.
Note
RegionViT-Small-224 model from “RegionViT: Regional-to-Local Attention for Vision Transformers”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regionvit_small_224 = flowvision.models.regionvit_small_224(pretrained=False, progress=True)
-
flowvision.models.
regionvit_small_w14_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the RegionViT-Small-w14-224 model.
Note
RegionViT-Small-w14-224 model from “RegionViT: Regional-to-Local Attention for Vision Transformers”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regionvit_small_w14_224 = flowvision.models.regionvit_small_w14_224(pretrained=False, progress=True)
-
flowvision.models.
regionvit_small_w14_peg_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the RegionViT-Small-w14-peg-224 model.
Note
RegionViT-Small-w14-peg-224 model from “RegionViT: Regional-to-Local Attention for Vision Transformers”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regionvit_small_w14_peg_224 = flowvision.models.regionvit_small_w14_peg_224(pretrained=False, progress=True)
-
flowvision.models.
regionvit_tiny_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the RegionViT-Tiny-224 model.
Note
RegionViT-Tiny-224 model from “RegionViT: Regional-to-Local Attention for Vision Transformers”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> regionvit_tiny_224 = flowvision.models.regionvit_tiny_224(pretrained=False, progress=True)
VAN¶
-
flowvision.models.
van_base
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs the VAN-Base model trained on ImageNet-1k.
Note
VAN-Base model from “Visual Attention Network”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> van_base = flowvision.models.van_base(pretrained=False, progress=True)
-
flowvision.models.
van_large
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs the VAN-Large model trained on ImageNet-1k.
Note
VAN-Large model from “Visual Attention Network”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> van_large = flowvision.models.van_large(pretrained=False, progress=True)
-
flowvision.models.
van_small
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs the VAN-Small model trained on ImageNet-1k.
Note
VAN-Small model from “Visual Attention Network”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> van_small = flowvision.models.van_small(pretrained=False, progress=True)
-
flowvision.models.
van_tiny
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs the VAN-Tiny model trained on ImageNet-1k.
Note
VAN-Tiny model from “Visual Attention Network”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> van_tiny = flowvision.models.van_tiny(pretrained=False, progress=True)
LeViT¶
-
flowvision.models.
levit_128
(num_classes=1000, distillation=True, pretrained=False)[source]¶ Constructs the LeViT-128 model.
Note
LeViT-128 model architecture from the LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> levit_128 = flowvision.models.levit_128(pretrained=False, progress=True)
-
flowvision.models.
levit_128s
(num_classes=1000, distillation=True, pretrained=False)[source]¶ Constructs the LeViT-128S model.
Note
LeViT-128S model architecture from the LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> levit_128s = flowvision.models.levit_128s(pretrained=False, progress=True)
-
flowvision.models.
levit_192
(num_classes=1000, distillation=True, pretrained=False)[source]¶ Constructs the LeViT-192 model.
Note
LeViT-192 model architecture from the LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> levit_192 = flowvision.models.levit_192(pretrained=False, progress=True)
-
flowvision.models.
levit_256
(num_classes=1000, distillation=True, pretrained=False)[source]¶ Constructs the LeViT-256 model.
Note
LeViT-256 model architecture from the LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> levit_256 = flowvision.models.levit_256(pretrained=False, progress=True)
-
flowvision.models.
levit_384
(num_classes=1000, distillation=True, pretrained=False)[source]¶ Constructs the LeViT-384 model.
Note
LeViT-384 model architecture from the LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference paper.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> levit_384 = flowvision.models.levit_384(pretrained=False, progress=True)
MobileViT¶
-
flowvision.models.
mobilevit_small
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs MobileViT-S 224x224 model pretrained on ImageNet-1k.
Note
MobileViT-S 224x224 model from “MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mobilevit_s = flowvision.models.mobilevit_small(pretrained=False, progress=True)
-
flowvision.models.
mobilevit_x_small
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs MobileViT-XS 224x224 model pretrained on ImageNet-1k.
Note
MobileViT-XS 224x224 model from “MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mobilevit_xs = flowvision.models.mobilevit_x_small(pretrained=False, progress=True)
-
flowvision.models.
mobilevit_xx_small
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs MobileViT-XXS 224x224 model pretrained on ImageNet-1k.
Note
MobileViT-XXS 224x224 model from “MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> mobilevit_xxs = flowvision.models.mobilevit_xx_small(pretrained=False, progress=True)
DeiT-III¶
-
flowvision.models.
deit_base_patch16_LS_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Base-patch16-LS-224 model.
Note
DeiT-Base-patch16-LS-224 model from “DeiT III: Revenge of the ViT”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_base_patch16_LS_224 = flowvision.models.deit_base_patch16_LS_224(pretrained=False, progress=True)
-
flowvision.models.
deit_base_patch16_LS_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Base-patch16-LS-224 ImageNet21k pretrained model.
Note
DeiT-Base-patch16-LS-224 ImageNet21k pretrained model from “DeiT III: Revenge of the ViT”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_base_patch16_LS_224_in21k = flowvision.models.deit_base_patch16_LS_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
deit_base_patch16_LS_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Base-patch16-LS-384 model.
Note
DeiT-Base-patch16-LS-384 model from “DeiT III: Revenge of the ViT”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_base_patch16_LS_384 = flowvision.models.deit_base_patch16_LS_384(pretrained=False, progress=True)
-
flowvision.models.
deit_base_patch16_LS_384_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Base-patch16-LS-384 ImageNet21k pretrained model.
Note
DeiT-Base-patch16-LS-384 ImageNet21k pretrained model from “DeiT III: Revenge of the ViT”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_base_patch16_LS_384_in21k = flowvision.models.deit_base_patch16_LS_384_in21k(pretrained=False, progress=True)
-
flowvision.models.
deit_huge_patch14_LS_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Huge-patch14-LS-224 model.
Note
DeiT-Huge-patch14-LS-224 model from “DeiT III: Revenge of the ViT”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_huge_patch14_LS_224 = flowvision.models.deit_huge_patch14_LS_224(pretrained=False, progress=True)
-
flowvision.models.
deit_huge_patch14_LS_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Huge-patch14-LS-224 ImageNet21k pretrained model.
Note
DeiT-Huge-patch14-LS-224 ImageNet21k pretrained model from “DeiT III: Revenge of the ViT”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_huge_patch14_LS_224_in21k = flowvision.models.deit_huge_patch14_LS_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
deit_large_patch16_LS_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Large-patch16-LS-224 model.
Note
DeiT-Large-patch16-LS-224 model from “DeiT III: Revenge of the ViT”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_large_patch16_LS_224 = flowvision.models.deit_large_patch16_LS_224(pretrained=False, progress=True)
-
flowvision.models.
deit_large_patch16_LS_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Large-patch16-LS-224 ImageNet21k pretrained model.
Note
DeiT-Large-patch16-LS-224 ImageNet21k pretrained model from “DeiT III: Revenge of the ViT”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_large_patch16_LS_224_in21k = flowvision.models.deit_large_patch16_LS_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
deit_large_patch16_LS_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Large-patch16-LS-384 model.
Note
DeiT-Large-patch16-LS-384 model from “DeiT III: Revenge of the ViT”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_large_patch16_LS_384 = flowvision.models.deit_large_patch16_LS_384(pretrained=False, progress=True)
-
flowvision.models.
deit_large_patch16_LS_384_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Large-patch16-LS-384 ImageNet21k pretrained model.
Note
DeiT-Large-patch16-LS-384 ImageNet21k pretrained model from “DeiT III: Revenge of the ViT”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_large_patch16_LS_384_in21k = flowvision.models.deit_large_patch16_LS_384_in21k(pretrained=False, progress=True)
-
flowvision.models.
deit_small_patch16_LS_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Small-patch16-LS-224 model.
Note
DeiT-Small-patch16-LS-224 model from “DeiT III: Revenge of the ViT”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_small_patch16_LS_224 = flowvision.models.deit_small_patch16_LS_224(pretrained=False, progress=True)
-
flowvision.models.
deit_small_patch16_LS_224_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Small-patch16-LS-224 ImageNet21k pretrained model.
Note
DeiT-Small-patch16-LS-224 ImageNet21k pretrained model from “DeiT III: Revenge of the ViT”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_small_patch16_LS_224_in21k = flowvision.models.deit_small_patch16_LS_224_in21k(pretrained=False, progress=True)
-
flowvision.models.
deit_small_patch16_LS_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Small-patch16-LS-384 model.
Note
DeiT-Small-patch16-LS-384 model from “DeiT III: Revenge of the ViT”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_small_patch16_LS_384 = flowvision.models.deit_small_patch16_LS_384(pretrained=False, progress=True)
-
flowvision.models.
deit_small_patch16_LS_384_in21k
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the DeiT-Small-patch16-LS-384 ImageNet21k pretrained model.
Note
DeiT-Small-patch16-LS-384 ImageNet21k pretrained model from “DeiT III: Revenge of the ViT”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> deit_small_patch16_LS_384_in21k = flowvision.models.deit_small_patch16_LS_384_in21k(pretrained=False, progress=True)
CaiT¶
-
flowvision.models.
cait_M36_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the CaiT-M36-384 model.
Note
CaiT-M36-384 model from “Going Deeper With Image Transformers”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cait_M36_384 = flowvision.models.cait_M36_384(pretrained=False, progress=True)
-
flowvision.models.
cait_M48_448
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the CaiT-M48-448 model.
Note
CaiT-M48-448 model from “Going Deeper With Image Transformers”. The required input size of the model is 448x448.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cait_M48_448 = flowvision.models.cait_M48_448(pretrained=False, progress=True)
-
flowvision.models.
cait_S24_224
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the CaiT-S24-224 model.
Note
CaiT-S24-224 model from “Going Deeper With Image Transformers”. The required input size of the model is 224x224.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cait_S24_224 = flowvision.models.cait_S24_224(pretrained=False, progress=True)
-
flowvision.models.
cait_S24_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the CaiT-S24-384 model.
Note
CaiT-S24-384 model from “Going Deeper With Image Transformers”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cait_S24_384 = flowvision.models.cait_S24_384(pretrained=False, progress=True)
-
flowvision.models.
cait_S36_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the CaiT-S36-384 model.
Note
CaiT-S36-384 model from “Going Deeper With Image Transformers”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cait_S36_384 = flowvision.models.cait_S36_384(pretrained=False, progress=True)
-
flowvision.models.
cait_XS24_384
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the CaiT-XS24-384 model.
Note
CaiT-XS24-384 model from “Going Deeper With Image Transformers”. The required input size of the model is 384x384.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> cait_XS24_384 = flowvision.models.cait_XS24_384(pretrained=False, progress=True)
DLA¶
-
flowvision.models.
dla102
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs DLA102 224x224 model trained on ImageNet-1k.
Note
DLA102 224x224 model from “Deep Layer Aggregation”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> dla102 = flowvision.models.dla102(pretrained=False, progress=True)
-
flowvision.models.
dla102x
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs DLA102x 224x224 model trained on ImageNet-1k.
Note
DLA102x 224x224 model from “Deep Layer Aggregation”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> dla102x = flowvision.models.dla102x(pretrained=False, progress=True)
-
flowvision.models.
dla102x2
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs DLA102x2 224x224 model trained on ImageNet-1k.
Note
DLA102x2 224x224 model from “Deep Layer Aggregation”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> dla102x2 = flowvision.models.dla102x2(pretrained=False, progress=True)
-
flowvision.models.
dla169
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs DLA169 224x224 model trained on ImageNet-1k.
Note
DLA169 224x224 model from “Deep Layer Aggregation”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> dla169 = flowvision.models.dla169(pretrained=False, progress=True)
-
flowvision.models.
dla34
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs DLA34 224x224 model trained on ImageNet-1k.
Note
DLA34 224x224 model from “Deep Layer Aggregation”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> dla34 = flowvision.models.dla34(pretrained=False, progress=True)
-
flowvision.models.
dla46_c
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs DLA46_c 224x224 model trained on ImageNet-1k.
Note
DLA46_c 224x224 model from “Deep Layer Aggregation”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> dla46_c = flowvision.models.dla46_c(pretrained=False, progress=True)
-
flowvision.models.
dla46x_c
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs DLA46x_c 224x224 model trained on ImageNet-1k.
Note
DLA46x_c 224x224 model from “Deep Layer Aggregation”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> dla46x_c = flowvision.models.dla46x_c(pretrained=False, progress=True)
-
flowvision.models.
dla60
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs DLA60 224x224 model trained on ImageNet-1k.
Note
DLA60 224x224 model from “Deep Layer Aggregation”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> dla60 = flowvision.models.dla60(pretrained=False, progress=True)
-
flowvision.models.
dla60x
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs DLA60x 224x224 model trained on ImageNet-1k.
Note
DLA60x 224x224 model from “Deep Layer Aggregation”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> dla60x = flowvision.models.dla60x(pretrained=False, progress=True)
-
flowvision.models.
dla60x_c
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs DLA60x_c 224x224 model trained on ImageNet-1k.
Note
DLA60x_c 224x224 model from “Deep Layer Aggregation”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> dla60x_c = flowvision.models.dla60x_c(pretrained=False, progress=True)
GENet¶
-
flowvision.models.
genet_large
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs GENet-large 256x256 model pretrained on ImageNet-1k.
Note
GENet-large 256x256 model from “Neural Architecture Design for GPU-Efficient Networks”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> genet_large = flowvision.models.genet_large(pretrained=False, progress=True)
-
flowvision.models.
genet_normal
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs GENet-normal 192x192 model pretrained on ImageNet-1k.
Note
GENet-normal 192x192 model from “Neural Architecture Design for GPU-Efficient Networks”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> genet_normal = flowvision.models.genet_normal(pretrained=False, progress=True)
-
flowvision.models.
genet_small
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs GENet-small 192x192 model pretrained on ImageNet-1k.
Note
GENet-small 192x192 model from “Neural Architecture Design for GPU-Efficient Networks”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> genet_small = flowvision.models.genet_small(pretrained=False, progress=True)
HRNet¶
-
flowvision.models.
hrnet_w18
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs HRNet-w18 224x224 model pretrained on ImageNet-1k.
Note
HRNet-w18 224x224 model from “Deep High-Resolution Representation Learning for Visual Recognition”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> hrnet_w18 = flowvision.models.hrnet_w18(pretrained=False, progress=True)
-
flowvision.models.
hrnet_w18_small
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs HRNet-w18-small 224x224 model pretrained on ImageNet-1k.
Note
HRNet-w18-small 224x224 model from “Deep High-Resolution Representation Learning for Visual Recognition”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> hrnet_w18_small = flowvision.models.hrnet_w18_small(pretrained=False, progress=True)
-
flowvision.models.
hrnet_w18_small_v2
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs HRNet-w18-small-v2 224x224 model pretrained on ImageNet-1k.
Note
HRNet-w18-small-v2 224x224 model from “Deep High-Resolution Representation Learning for Visual Recognition”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> hrnet_w18_small_v2 = flowvision.models.hrnet_w18_small_v2(pretrained=False, progress=True)
-
flowvision.models.
hrnet_w30
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs HRNet-w30 224x224 model pretrained on ImageNet-1k.
Note
HRNet-w30 224x224 model from “Deep High-Resolution Representation Learning for Visual Recognition”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> hrnet_w30 = flowvision.models.hrnet_w30(pretrained=False, progress=True)
-
flowvision.models.
hrnet_w32
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs HRNet-w32 224x224 model pretrained on ImageNet-1k.
Note
HRNet-w32 224x224 model from “Deep High-Resolution Representation Learning for Visual Recognition”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> hrnet_w32 = flowvision.models.hrnet_w32(pretrained=False, progress=True)
-
flowvision.models.
hrnet_w40
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs HRNet-w40 224x224 model pretrained on ImageNet-1k.
Note
HRNet-w40 224x224 model from “Deep High-Resolution Representation Learning for Visual Recognition”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> hrnet_w40 = flowvision.models.hrnet_w40(pretrained=False, progress=True)
-
flowvision.models.
hrnet_w44
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs HRNet-w44 224x224 model pretrained on ImageNet-1k.
Note
HRNet-w44 224x224 model from “Deep High-Resolution Representation Learning for Visual Recognition”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> hrnet_w44 = flowvision.models.hrnet_w44(pretrained=False, progress=True)
-
flowvision.models.
hrnet_w48
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs HRNet-w48 224x224 model pretrained on ImageNet-1k.
Note
HRNet-w48 224x224 model from “Deep High-Resolution Representation Learning for Visual Recognition”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> hrnet_w48 = flowvision.models.hrnet_w48(pretrained=False, progress=True)
-
flowvision.models.
hrnet_w64
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs HRNet-w64 224x224 model pretrained on ImageNet-1k.
Note
HRNet-w64 224x224 model from “Deep High-Resolution Representation Learning for Visual Recognition”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> hrnet_w64 = flowvision.models.hrnet_w64(pretrained=False, progress=True)
FAN¶
-
flowvision.models.
fan_base_16_p4_hybrid
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-Hybrid-base 224x224 model pretrained on ImageNet-1k.
Note
FAN-Hybrid-base 224x224 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_base_16_p4_hybrid = flowvision.models.fan_base_16_p4_hybrid(pretrained=False, progress=True)
-
flowvision.models.
fan_base_16_p4_hybrid_in22k_1k
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-Hybrid-base 224x224 model pretrained on ImageNet-21k.
Note
FAN-Hybrid-base 224x224 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_base_16_p4_hybrid_in22k_1k = flowvision.models.fan_base_16_p4_hybrid_in22k_1k(pretrained=False, progress=True)
-
flowvision.models.
fan_base_16_p4_hybrid_in22k_1k_384
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-Hybrid-base 384x384 model pretrained on ImageNet-21k.
Note
FAN-Hybrid-base 384x384 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_base_16_p4_hybrid_in22k_1k_384 = flowvision.models.fan_base_16_p4_hybrid_in22k_1k_384(pretrained=False, progress=True)
-
flowvision.models.
fan_base_18_p16_224
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-ViT-base 224x224 model pretrained on ImageNet-1k.
Note
FAN-ViT-base 224x224 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_base_18_p16_224 = flowvision.models.fan_base_18_p16_224(pretrained=False, progress=True)
-
flowvision.models.
fan_large_16_p4_hybrid
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-Hybrid-large 224x224 model pretrained on ImageNet-1k.
Note
FAN-Hybrid-large 224x224 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_large_16_p4_hybrid = flowvision.models.fan_large_16_p4_hybrid(pretrained=False, progress=True)
-
flowvision.models.
fan_large_16_p4_hybrid_in22k_1k
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-Hybrid-large 224x224 model pretrained on ImageNet-21k.
Note
FAN-Hybrid-large 224x224 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_large_16_p4_hybrid_in22k_1k = flowvision.models.fan_large_16_p4_hybrid_in22k_1k(pretrained=False, progress=True)
-
flowvision.models.
fan_large_16_p4_hybrid_in22k_1k_384
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-Hybrid-large 384x384 model pretrained on ImageNet-21k.
Note
FAN-Hybrid-large 384x384 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_large_16_p4_hybrid_in22k_1k_384 = flowvision.models.fan_large_16_p4_hybrid_in22k_1k_384(pretrained=False, progress=True)
-
flowvision.models.
fan_large_24_p16_224
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-ViT-large 224x224 model pretrained on ImageNet-1k.
Note
FAN-ViT-large 224x224 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_large_24_p16_224 = flowvision.models.fan_large_24_p16_224(pretrained=False, progress=True)
-
flowvision.models.
fan_small_12_p16_224
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-ViT-small 224x224 model pretrained on ImageNet-1k.
Note
FAN-ViT-small 224x224 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_small_12_p16_224 = flowvision.models.fan_small_12_p16_224(pretrained=False, progress=True)
-
flowvision.models.
fan_small_12_p4_hybrid
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-Hybrid-small 224x224 model pretrained on ImageNet-1k.
Note
FAN-Hybrid-small 224x224 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_small_12_p4_hybrid = flowvision.models.fan_small_12_p4_hybrid(pretrained=False, progress=True)
-
flowvision.models.
fan_tiny_12_p16_224
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-ViT-tiny 224x224 model pretrained on ImageNet-1k.
Note
FAN-ViT-tiny 224x224 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_tiny_12_p16_224 = flowvision.models.fan_tiny_12_p16_224(pretrained=False, progress=True)
-
flowvision.models.
fan_tiny_8_p4_hybrid
(pretrained: bool = False, progress: bool = True, **kwargs)[source]¶ Constructs FAN-Hybrid-tiny 224x224 model pretrained on ImageNet-1k.
Note
FAN-Hybrid-tiny 224x224 model from “Understanding The Robustness in Vision Transformers”.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> fan_tiny_8_p4_hybrid = flowvision.models.fan_tiny_8_p4_hybrid(pretrained=False, progress=True)
Neural Style Transfer¶
-
flowvision.models.style_transfer.
fast_neural_style
(pretrained: bool = False, progress: bool = True, style_model: str = 'sketch', **kwargs: Any) → flowvision.models.style_transfer.stylenet.FastNeuralStyle[source]¶ Constructs the Fast Neural Style Transfer model.
Note
Perceptual Losses for Real-Time Style Transfer and Super-Resolution. The required minimum input size of the model is 256x256. For more details for how to use this model, users can refer to: neural_style_transfer project.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on ImageNet. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
style_model (str) – Which pretrained style model to download, user can choose from [sketch, candy, mosaic, rain_princess, udnie]. Default:
sketch
For example:
>>> import flowvision >>> stylenet = flowvision.models.style_transfer.fast_neural_style(pretrained=True, progress=True, style_model = "sketch")
Face Recognition¶
-
flowvision.models.face_recognition.
iresnet101
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the IResNet-101 model trained on Glint360K(https://github.com/deepinsight/insightface/tree/master/recognition/partial_fc#4-download).
Note
The required input size of the model is 112x112.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on Glint360K. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> iresnet101 = flowvision.models.face_recognition.iresnet101(pretrained=False, progress=True)
-
flowvision.models.face_recognition.
iresnet50
(pretrained=False, progress=True, **kwargs)[source]¶ Constructs the IResNet-50 model trained on webface600K(https://www.face-benchmark.org/download.html).
Note
The required input size of the model is 112x112.
- Parameters
pretrained (bool) – Whether to download the pre-trained model on webface600K. Default:
False
progress (bool) – If True, displays a progress bar of the download to stderr. Default:
True
For example:
>>> import flowvision >>> iresnet50 = flowvision.models.face_recognition.iresnet50(pretrained=False, progress=True)
Semantic Segmentation¶
FCN¶
-
flowvision.models.segmentation.
fcn_resnet101_coco
(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]¶ Constructs a Fully-Convolutional Network model with a ResNet-101 backbone.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
aux_loss (bool) – If True, it uses an auxiliary loss
For example:
>>> import flowvision >>> deeplabv3_mobilenet_v3_large_coco = flowvision.models.segmentation.fcn_resnet101_coco(pretrained=True, progress=True)
-
flowvision.models.segmentation.
fcn_resnet50_coco
(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]¶ Constructs a Fully-Convolutional Network model with a ResNet-50 backbone.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
aux_loss (bool) – If True, it uses an auxiliary loss
For example:
>>> import flowvision >>> deeplabv3_mobilenet_v3_large_coco = flowvision.models.segmentation.fcn_resnet50_coco(pretrained=True, progress=True)
DeepLabV3¶
-
flowvision.models.segmentation.
deeplabv3_mobilenet_v3_large_coco
(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]¶ Constructs a DeepLabV3 model with a MobileNetV3-Large backbone. :param pretrained: If True, returns a model pre-trained on COCO train2017 which
contains the same classes as Pascal VOC
- Parameters
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
aux_loss (bool) – If True, it uses an auxiliary loss
For example:
>>> import flowvision >>> deeplabv3_mobilenet_v3_large_coco = flowvision.models.segmentation.deeplabv3_mobilenet_v3_large_coco(pretrained=True, progress=True)
-
flowvision.models.segmentation.
deeplabv3_resnet101_coco
(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]¶ Constructs a DeepLabV3 model with a ResNet-101 backbone. :param pretrained: If True, returns a model pre-trained on COCO train2017 which
contains the same classes as Pascal VOC
- Parameters
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – The number of classes
aux_loss (bool) – If True, include an auxiliary classifier
For example:
>>> import flowvision >>> deeplabv3_resnet101_coco = flowvision.models.segmentation.deeplabv3_resnet101_coco(pretrained=True, progress=True)
-
flowvision.models.segmentation.
deeplabv3_resnet50_coco
(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]¶ Constructs a DeepLabV3 model with a ResNet-50 backbone. :param pretrained: If True, returns a model pre-trained on COCO train2017 which
contains the same classes as Pascal VOC
- Parameters
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
aux_loss (bool) – If True, it uses an auxiliary loss
For example:
>>> import flowvision >>> deeplabv3_resnet50_coco = flowvision.models.segmentation.deeplabv3_resnet50_coco(pretrained=True, progress=True)
LRASPP¶
-
flowvision.models.segmentation.
lraspp_mobilenet_v3_large_coco
(pretrained=False, progress=True, num_classes=21, **kwargs)[source]¶ Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone. :param pretrained: If True, returns a model pre-trained on COCO train2017 which
contains the same classes as Pascal VOC
- Parameters
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
For example:
>>> import flowvision >>> lraspp_mobilenet_v3_large_coco = flowvision.models.segmentation.lraspp_mobilenet_v3_large_coco(pretrained=True, progress=True)
Object Detection¶
Faster R-CNN¶
-
flowvision.models.detection.
fasterrcnn_mobilenet_v3_large_320_fpn
(pretrained: bool = False, progress: bool = True, num_classes: Optional[int] = 91, pretrained_backbone: bool = True, trainable_backbone_layers: Optional[int] = None, **kwargs)[source]¶ Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases. It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
fasterrcnn_resnet50_fpn()
for more details.- Parameters
pretrained (bool) – If True, returns a model pre-trained on COCO train2017
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet
trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If
None
is passed (the default) this value is set to 3.
For example:
>>> import flowvision >>> fasterrcnn_mobilenet_v3_large_320_fpn = flowvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=False, progress=True)
-
flowvision.models.detection.
fasterrcnn_mobilenet_v3_large_fpn
(pretrained: bool = False, progress: bool = True, num_classes: Optional[int] = 91, pretrained_backbone: bool = True, trainable_backbone_layers: Optional[int] = None, **kwargs)[source]¶ Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone. It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
fasterrcnn_resnet50_fpn()
for more details.- Parameters
pretrained (bool) – If True, returns a model pre-trained on COCO train2017
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet
trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If
None
is passed (the default) this value is set to 3.
For example:
>>> import flowvision >>> fasterrcnn_mobilenet_v3_large_fpn = flowvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=False, progress=True)
-
flowvision.models.detection.
fasterrcnn_resnet50_fpn
(pretrained: bool = False, progress: bool = True, num_classes: Optional[int] = 91, pretrained_backbone: bool = True, trainable_backbone_layers: Optional[int] = None, **kwargs)[source]¶ Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.
Reference: “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”.
The input to the model is expected to be a list of tensors, each of shape
[C, H, W]
, one for each images, and should be in0-1
range. Different images can have different sizes.The behavior of the model changes depending if it is in training or evaluation mode.
During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing:
boxes (
FloatTensor[N, 4]
): the ground-truth boxes in[x1, y1, x2, y2]
format, with0 <= x1 < x2 <= W
and0 <= y1 < y2 <= H
.labels (
Int64Tensor[N]
): the class label for each ground-truth box
The model returns a
Dict[Tensor]
during training, containing the classification and regression losses for both the RPN and the R-CNN.During inference, the model requires only the input tensors, and returns the psot-processed predictions as a
List[Dict[Tensor]]
, one for each input image. The fields of theDict
are as follows, whereN
is the number of detections:boxes (
FloatTensor[N, 4]
): the predicted boxes in[x1, y1, x2, y2]
format, with0 <= x1 < x2 <= W
and0 <= y1 < y2 <= H
.labels (
Int64Tensor[N]
): the predicted labels for each detectionscores (
Tensor[N]
): the scores of each detection
For more details on the output, you may refer to instance_seg_output.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on COCO train2017
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet
trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If
None
is passed (the default) this value is set to 3.
For example:
>>> import flowvision >>> fasterrcnn_resnet50_fpn = flowvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, progress=True)
RetinaNet¶
-
flowvision.models.detection.
retinanet_resnet50_fpn
(pretrained: bool = False, progress: bool = True, num_classes: Optional[int] = 91, pretrained_backbone: bool = True, trainable_backbone_layers: Optional[int] = None, **kwargs)[source]¶ Constructs a RetinaNet model with a ResNet-50-FPN backbone.
Reference: “Focal Loss for Dense Object Detection”.
The input to the model is expected to be a list of tensors, each of shape
[C, H, W]
, one for each image, and should be in0-1
range. Different images can have different sizes.The behavior of the model changes depending if it is in training or evaluation mode.
During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing:
boxes (
FloatTensor[N, 4]
): the ground-truth boxes in[x1, y1, x2, y2]
format, with0 <= x1 < x2 <= W
and0 <= y1 < y2 <= H
.labels (
Int64Tensor[N]
): the class label for each ground-truth box
The model returns a
Dict[Tensor]
during training, containing the classification and regression losses.During inference, the model requires only the input tensors, and returns the post-processed predictions as a
List[Dict[Tensor]]
, one for each input image. The fields of theDict
are as follows, whereN
is the number of detections:boxes (
FloatTensor[N, 4]
): the predicted boxes in[x1, y1, x2, y2]
format, with0 <= x1 < x2 <= W
and0 <= y1 < y2 <= H
.labels (
Int64Tensor[N]
): the predicted labels for each detectionscores (
Tensor[N]
): the scores of each detection
For more details on the output, you may refer to instance_seg_output.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on COCO train2017
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet
trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
For example:
>>> import flowvision >>> retinanet_resnet50_fpn = flowvision.models.detection.retinanet_resnet50_fpn(pretrained=False, progress=True)
SSD¶
-
flowvision.models.detection.
ssd300_vgg16
(pretrained: bool = False, progress: bool = True, num_classes: int = 91, pretrained_backbone: bool = True, trainable_backbone_layers: Optional[int] = None, **kwargs: Any)[source]¶ Constructs an SSD model with input size 300x300 and a VGG16 backbone.
Reference: “SSD: Single Shot MultiBox Detector”.
The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes but they will be resized to a fixed size before passing it to the backbone.
The behavior of the model changes depending if it is in training or evaluation mode.
During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing:
boxes (
FloatTensor[N, 4]
): the ground-truth boxes in[x1, y1, x2, y2]
format, with0 <= x1 < x2 <= W
and0 <= y1 < y2 <= H
.labels (Int64Tensor[N]): the class label for each ground-truth box
The model returns a Dict[Tensor] during training, containing the classification and regression losses.
During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where
N
is the number of detections:boxes (
FloatTensor[N, 4]
): the predicted boxes in[x1, y1, x2, y2]
format, with0 <= x1 < x2 <= W
and0 <= y1 < y2 <= H
.labels (Int64Tensor[N]): the predicted labels for each detection
scores (Tensor[N]): the scores for each detection
Example:
- Parameters
pretrained (bool) – If True, returns a model pre-trained on COCO train2017
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet
trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
For example:
>>> import flowvision >>> ssd300_vgg16 = flowvision.models.detection.ssd300_vgg16(pretrained=False, progress=True)
SSDLite¶
-
flowvision.models.detection.
ssdlite320_mobilenet_v3_large
(pretrained: bool = False, progress: bool = True, num_classes: int = 91, pretrained_backbone: bool = False, trainable_backbone_layers: Optional[int] = None, norm_layer: Optional[Callable[[…], oneflow.nn.modules.module.Module]] = None, **kwargs: Any)[source]¶ Constructs an SSDlite model with input size 320x320 and a MobileNetV3 Large backbone, as described at “Searching for MobileNetV3” and “MobileNetV2: Inverted Residuals and Linear Bottlenecks”.
See
ssd300_vgg16()
for more details.- Parameters
pretrained (bool) – If True, returns a model pre-trained on COCO train2017
progress (bool) – If True, displays a progress bar of the download to stderr
num_classes (int) – number of output classes of the model (including the background)
pretrained_backbone (bool) – If True, returns a model with backbone pre-trained on Imagenet
trainable_backbone_layers (int) – number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable.
norm_layer (callable, optional) – Module specifying the normalization layer to use.
For example:
>>> import flowvision >>> ssdlite320_mobilenet_v3_large = flowvision.models.detection.ssdlite320_mobilenet_v3_large(pretrained=False, progress=True)
flowvision.scheduler¶
-
class
flowvision.scheduler.
Scheduler
(optimizer: oneflow.optim.optimizer.Optimizer, param_group_field: str, noise_range_t=None, noise_type='normal', noise_pct=0.67, noise_std=1.0, noise_seed=None, initialize: bool = True)[source]¶ Parameter Scheduler Base Class Borrowed from pytorch-image-models A scheduler base class that can be used to schedule any optimizer parameter groups. Unlike the builtin PyTorch schedulers, this is intended to be consistently called
At the END of each epoch, before incrementing the epoch count, to calculate next epoch’s value
At the END of each optimizer update, after incrementing the update count, to calculate next update’s value
The schedulers built on this should try to remain as stateless as possible (for simplicity). This family of schedulers is attempting to avoid the confusion of the meaning of ‘last_epoch’ and -1 values for special behaviour. All epoch and update counts must be tracked in the training code and explicitly passed in to the schedulers on the corresponding step or step_update call. Based on ideas from:
-
class
flowvision.scheduler.
CosineLRScheduler
(optimizer: oneflow.optim.optimizer.Optimizer, t_initial: int, t_mul: float = 1.0, lr_min: float = 0.0, decay_rate: float = 1.0, warmup_t=0, warmup_lr_init=0, warmup_prefix=False, cycle_limit=0, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42)[source]¶ Cosine decay with restarts borrowed from timm. This is described in the paper https://arxiv.org/abs/1608.03983.
Inspiration from https://github.com/allenai/allennlp/blob/master/allennlp/training/learning_rate_schedulers/cosine.py
- Parameters
optimizer – The optimizer will be used for the training process
t_initial – The initial number of epochs. Example, 50, 100 etc.
t_mul – updates the SGDR schedule annealing.
lr_min – Defaults to 1e-5. The minimum learning rate to use during the scheduling. The learning rate does not ever go below this value.
decay_rate – When decay rate > 0 and < 1., at every restart the learning rate is decayed by new learning rate which equals
lr * decay_rate
. If decay_rate=0.5, then in that case, the new learning rate becomes half the initial lr.warmup_t – Defines the number of warmup epochs.
warmup_lr_init – The initial learning rate during warmup.
-
class
flowvision.scheduler.
LinearLRScheduler
(optimizer: oneflow.optim.optimizer.Optimizer, t_initial: int, lr_min_rate: float, warmup_t=0, warmup_lr_init=0.0, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True)[source]¶ Linear warmup and linear decay scheduler
Inspiration from https://github.com/microsoft/Swin-Transformer/blob/main/lr_scheduler.py
- Parameters
optimizer – The optimizer will be used for the training process
t_initial – The initial number of epochs. Example, 50, 100 etc.
t_mul – updates the SGDR schedule annealing.
lr_min_rate – The minimum learning rate factor to use during the scheduling. The learning rate does not ever go below to
lr * lr_min_rate
.warmup_t – Defines the number of warmup epochs.
warmup_lr_init – The initial learning rate during warmup.
-
class
flowvision.scheduler.
StepLRScheduler
(optimizer: oneflow.optim.optimizer.Optimizer, decay_t: float, decay_rate: float = 1.0, warmup_t=0, warmup_lr_init=0, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True)[source]¶ Step LRScheduler Decays the learning rate of each parameter group by decay_rate every decay_t steps.
- Parameters
optimizer – The optimizer will be used for the training process
decay_t – Period of learning rate decay.
decay_rate – Multiplicative factor of learning rate decay. Default: 1.0.
warmup_t – Defines the number of warmup epochs.
warmup_lr_init – The initial learning rate during warmup.
-
class
flowvision.scheduler.
MultiStepLRScheduler
(optimizer: oneflow.optim.optimizer.Optimizer, decay_t: List[int], decay_rate: float = 1.0, warmup_t=0, warmup_lr_init=0, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True)[source]¶ MultiStep LRScheduler Decays the learning rate of each parameter group by decay_rate once the number of step reaches one of the decay_t.
- Parameters
optimizer – The optimizer will be used for the training process
decay_t – List of epoch indices. Must be increasing.
decay_rate – Multiplicative factor of learning rate decay. Default: 1.0.
warmup_t – Defines the number of warmup epochs.
warmup_lr_init – The initial learning rate during warmup.
-
class
flowvision.scheduler.
PolyLRScheduler
(optimizer: oneflow.optim.optimizer.Optimizer, t_initial: int, power: float = 0.5, lr_min: float = 0.0, cycle_mul: float = 1.0, cycle_decay: float = 1.0, cycle_limit: int = 1, warmup_t=0, warmup_lr_init=0, warmup_prefix=False, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, k_decay=1.0, initialize=True)[source]¶ Polynomial LR Scheduler w/ warmup, noise, and k-decay k-decay option based on k-decay: A New Method For Learning Rate Schedule - https://arxiv.org/abs/2004.05909
- Parameters
optimizer – The optimizer will be used for the training process
t_initial – The initial number of epochs. Example, 50, 100 etc.
power – The power of polynomial. Defaults to 0.5.
lr_min – Defaults to 1e-5. The minimum learning rate to use during
scheduling. The learning rate does not ever go below this value. (the) –
warmup_t – Defines the number of warmup epochs.
warmup_lr_init – The initial learning rate during warmup.
-
class
flowvision.scheduler.
TanhLRScheduler
(optimizer: oneflow.optim.optimizer.Optimizer, t_initial: int, lb: float = - 7.0, ub: float = 3.0, lr_min: float = 0.0, cycle_mul: float = 1.0, cycle_decay: float = 1.0, cycle_limit: int = 1, warmup_t=0, warmup_lr_init=0, warmup_prefix=False, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True)[source]¶ Hyberbolic-Tangent decay with restarts. This is described in the paper https://arxiv.org/abs/1806.01593
flowvision.transforms¶
Utils for Image Transforms¶
-
class
flowvision.transforms.
CenterCrop
(size)[source]¶ Crops the given image at the center. If the image is oneflow Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
- Parameters
size (sequence or int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
-
class
flowvision.transforms.
Compose
(transforms)[source]¶ Composes several transforms together. Please, see the note below. :param transforms: list of transforms to compose. :type transforms: list of
Transform
objectsExample
>>> transforms.Compose([ >>> transforms.CenterCrop(10), >>> transforms.ToTensor(), >>> ])
Note
In order to script the transformations, please use
flow.nn.Sequential
as below. >>> transforms = flow.nn.Sequential( >>> transforms.CenterCrop(10), >>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), >>> ) Make sure to use only scriptable transformations, i.e. that work withflow.Tensor
, does not require lambda functions orPIL.Image
.
-
class
flowvision.transforms.
ConvertImageDtype
(dtype: oneflow._oneflow_internal.dtype)[source]¶ Convert a tensor image to the given
dtype
and scale the values accordingly This function does not support PIL Image.- Parameters
dtype (flow.dtype) – Desired data type of the output
Note
When converting from a smaller to a larger integer
dtype
the maximum values are not mapped exactly. If converted back and forth, this mismatch has no effect.- Raises
RuntimeError – When trying to cast
flow.float32
toflow.int32
orflow.int64
as well as for trying to castflow.float64
toflow.int64
. These conversions might lead to overflow errors since the floating pointdtype
cannot store consecutive integers over the whole range of the integerdtype
.
-
class
flowvision.transforms.
FiveCrop
(size)[source]¶ Crop the given image into four corners and the central crop. If the image is flow Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions
Note
This transform returns a tuple of images and there may be a mismatch in the number of inputs and targets your Dataset returns. See below for an example of how to deal with this.
- Parameters
size (sequence or int) – Desired output size of the crop. If size is an
int
instead of sequence like (h, w), a square crop of size (size, size) is made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
Example
>>> transform = Compose([ >>> FiveCrop(size), # this is a list of PIL Images >>> Lambda(lambda crops: flow.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor >>> ]) >>> #In your test loop you can do the following: >>> input, target = batch # input is a 5d tensor, target is 2d >>> bs, ncrops, c, h, w = input.size() >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
-
class
flowvision.transforms.
GaussianBlur
(kernel_size, sigma=(0.1, 2.0))[source]¶ Blurs image with randomly chosen Gaussian blur. If the image is oneflow Tensor, it is expected to have […, C, H, W] shape, where … means an arbitrary number of leading dimensions.
- Parameters
kernel_size (int or sequence) – Size of the Gaussian kernel.
sigma (float or tuple of float (min, max)) – Standard deviation to be used for creating kernel to perform blurring. If float, sigma is fixed. If it is tuple of float (min, max), sigma is chosen uniformly at random to lie in the given range.
- Returns
Gaussian blurred version of the input image.
- Return type
PIL Image or Tensor
-
forward
(img: oneflow.Tensor) → oneflow.Tensor[source]¶ - Parameters
img (PIL Image or Tensor) – image to be blurred.
- Returns
Gaussian blurred image
- Return type
PIL Image or Tensor
-
static
get_params
(sigma_min: float, sigma_max: float) → float[source]¶ Choose sigma for random gaussian blurring.
- Parameters
sigma_min (float) – Minimum standard deviation that can be chosen for blurring kernel.
sigma_max (float) – Maximum standard deviation that can be chosen for blurring kernel.
- Returns
Standard deviation to be passed to calculate kernel for gaussian blurring.
- Return type
float
-
class
flowvision.transforms.
Grayscale
(num_output_channels=1)[source]¶ Convert image to grayscale. If the image is oneflow Tensor, it is expected to have […, 3, H, W] shape, where … means an arbitrary number of leading dimensions
- Parameters
num_output_channels (int) – (1 or 3) number of channels desired for output image
- Returns
Grayscale version of the input. - If
num_output_channels == 1
: returned image is single channel - Ifnum_output_channels == 3
: returned image is 3 channel with r == g == b- Return type
PIL Image
-
class
flowvision.transforms.
Lambda
(lambd)[source]¶ Apply a user-defined lambda as a transform.
- Parameters
lambd (function) – Lambda/function to be used for transform.
-
class
flowvision.transforms.
Normalize
(mean, std, inplace=False)[source]¶ Normalize a tensor image with mean and standard deviation. This transform does not support PIL Image. Given mean:
(mean[1],...,mean[n])
and std:(std[1],..,std[n])
forn
channels, this transform will normalize each channel of the inputflow.*Tensor
i.e.,output[channel] = (input[channel] - mean[channel]) / std[channel]
Note
This transform acts out of place, i.e., it does not mutate the input tensor.
- Parameters
mean (sequence) – Sequence of means for each channel.
std (sequence) – Sequence of standard deviations for each channel.
inplace (bool,optional) – Bool to make this operation in-place.
-
class
flowvision.transforms.
PILToTensor
[source]¶ Convert a
PIL Image
to a tensor of the same typeConverts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
-
class
flowvision.transforms.
Pad
(padding, fill=0, padding_mode='constant')[source]¶ Pad the given image on all sides with the given “pad” value. If the image is oneflow Tensor, it is expected to have […, H, W] shape, where … means at most 2 leading dimensions for mode reflect and symmetric, at most 3 leading dimensions for mode edge, and an arbitrary number of leading dimensions for mode constant
- Parameters
padding (int or sequence) – Padding on each border. If a single int is provided this is used to pad all borders. If sequence of length 2 is provided this is the padding on left/right and top/bottom respectively. If a sequence of length 4 is provided this is the padding for the left, top, right and bottom borders respectively.
fill (number or str or tuple) – Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant. Only number is supported for oneflow Tensor. Only int or str or tuple value is supported for PIL Image.
padding_mode (str) –
Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
constant: pads with a constant value, this value is specified with fill
edge: pads with the last value at the edge of the image. If input a 5D oneflow Tensor, the last 3 dimensions will be padded instead of the last 2
reflect: pads with reflection of image without repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2]
symmetric: pads with reflection of image repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3]
-
class
flowvision.transforms.
RandomApply
(transforms, p=0.5)[source]¶ Apply randomly a list of transformations with a given probability.
Note
In order to script the transformation, please use
flow.nn.ModuleList
as input instead of list/tuple of transforms as shown below:>>> transforms = transforms.RandomApply(flow.nn.ModuleList([ >>> transforms.ColorJitter(), >>> ]), p=0.3)
Make sure to use only scriptable transformations, i.e. that work with
flow.Tensor
, does not require lambda functions orPIL.Image
.- Parameters
transforms (sequence or Module) – list of transformations
p (float) – probability
-
class
flowvision.transforms.
RandomChoice
(transforms)[source]¶ Apply single transformation randomly picked from a list.
-
class
flowvision.transforms.
RandomCrop
(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')[source]¶ Crop the given image at a random location. If the image is oneflow Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions, but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
- Parameters
size (sequence or int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
padding (int or sequence, optional) – Optional padding on each border of the image. Default is None. If a single int is provided this is used to pad all borders. If sequence of length 2 is provided this is the padding on left/right and top/bottom respectively. If a sequence of length 4 is provided this is the padding for the left, top, right and bottom borders respectively.
pad_if_needed (boolean) – It will pad the image if smaller than the desired size to avoid raising an exception. Since cropping is done after padding, the padding seems to be done at a random offset.
fill (number or str or tuple) – Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant. Only number is supported for flow Tensor. Only int or str or tuple value is supported for PIL Image.
padding_mode (str) –
Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
constant: pads with a constant value, this value is specified with fill
edge: pads with the last value at the edge of the image. If input a 5D flow Tensor, the last 3 dimensions will be padded instead of the last 2
reflect: pads with reflection of image without repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2]
symmetric: pads with reflection of image repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3]
-
forward
(img)[source]¶ - Parameters
img (PIL Image or Tensor) – Image to be cropped.
- Returns
Cropped image.
- Return type
PIL Image or Tensor
-
static
get_params
(img: oneflow.Tensor, output_size: Tuple[int, int]) → Tuple[int, int, int, int][source]¶ Get parameters for
crop
for a random crop.- Parameters
img (PIL Image or Tensor) – Image to be cropped.
output_size (tuple) – Expected output size of the crop.
- Returns
params (i, j, h, w) to be passed to
crop
for random crop.- Return type
tuple
-
class
flowvision.transforms.
RandomGrayscale
(p=0.1)[source]¶ Randomly convert image to grayscale with a probability of p (default 0.1). If the image is flow Tensor, it is expected to have […, 3, H, W] shape, where … means an arbitrary number of leading dimensions
- Parameters
p (float) – probability that image should be converted to grayscale.
- Returns
Grayscale version of the input image with probability p and unchanged with probability (1-p). - If input image is 1 channel: grayscale version is 1 channel - If input image is 3 channel: grayscale version is 3 channel with r == g == b
- Return type
PIL Image or Tensor
-
class
flowvision.transforms.
RandomHorizontalFlip
(p=0.5)[source]¶ Horizontally flip the given image randomly with a given probability. If the image is flow Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions
- Parameters
p (float) – probability of the image being flipped. Default value is 0.5
-
class
flowvision.transforms.
RandomOrder
(transforms)[source]¶ Apply a list of transformations in a random order.
-
class
flowvision.transforms.
RandomResizedCrop
(size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=<InterpolationMode.BILINEAR: 'bilinear'>)[source]¶ Crop a random portion of image and resize it to a given size.
If the image is flow Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions
A crop of the original image is made: the crop has a random area (H * W) and a random aspect ratio. This crop is finally resized to the given size. This is popularly used to train the Inception networks.
- Parameters
size (int or sequence) – expected output size of the crop, for each edge. If size is an int instead of sequence like (h, w), a square output size
(size, size)
is made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).scale (tuple of float) – Specifies the lower and upper bounds for the random area of the crop, before resizing. The scale is defined with respect to the area of the original image.
ratio (tuple of float) – lower and upper bounds for the random aspect ratio of the crop, before resizing.
interpolation (InterpolationMode) – Desired interpolation enum defined by
flowvision.transforms.InterpolationMode
. Default isInterpolationMode.BILINEAR
. If input is Tensor, onlyInterpolationMode.NEAREST
,InterpolationMode.BILINEAR
andInterpolationMode.BICUBIC
are supported. For backward compatibility integer values (e.g.PIL.Image.NEAREST
) are still acceptable.
-
forward
(img)[source]¶ - Parameters
img (PIL Image or Tensor) – Image to be cropped and resized.
- Returns
Randomly cropped and resized image.
- Return type
PIL Image or Tensor
-
static
get_params
(img: oneflow.Tensor, scale: List[float], ratio: List[float]) → Tuple[int, int, int, int][source]¶ Get parameters for
crop
for a random sized crop.- Parameters
img (PIL Image or Tensor) – Input image.
scale (list) – range of scale of the origin size cropped
ratio (list) – range of aspect ratio of the origin aspect ratio cropped
- Returns
params (i, j, h, w) to be passed to
crop
for a random sized crop.- Return type
tuple
-
class
flowvision.transforms.
RandomSizedCrop
(*args, **kwargs)[source]¶ Note: This transform is deprecated in favor of RandomResizedCrop.
-
class
flowvision.transforms.
RandomTransforms
(transforms)[source]¶ Base class for a list of transformations with randomness
- Parameters
transforms (sequence) – list of transformations
-
class
flowvision.transforms.
RandomVerticalFlip
(p=0.5)[source]¶ Vertically flip the given image randomly with a given probability. If the image is flow Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions
- Parameters
p (float) – probability of the image being flipped. Default value is 0.5
-
class
flowvision.transforms.
Resize
(size, interpolation=<InterpolationMode.BILINEAR: 'bilinear'>)[source]¶ Resize the input image to the given size. If the image is oneflow Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions
- Parameters
size (sequence or int) – Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
interpolation (InterpolationMode) – Desired interpolation enum defined by
flowvision.transforms.InterpolationMode
. Default isInterpolationMode.BILINEAR
. If input is Tensor, onlyInterpolationMode.NEAREST
,InterpolationMode.BILINEAR
andInterpolationMode.BICUBIC
are supported. For backward compatibility integer values (e.g.PIL.Image.NEAREST
) are still acceptable.
-
class
flowvision.transforms.
Scale
(*args, **kwargs)[source]¶ Note: This transform is deprecated in favor of Resize.
-
class
flowvision.transforms.
Solarization
(p=0.1)[source]¶ Apply Solarization to the input PIL Image.
- Parameters
p (float) – probability that image should be applied with solarization operation.
-
class
flowvision.transforms.
TenCrop
(size, vertical_flip=False)[source]¶ Crop the given image into four corners and the central crop plus the flipped version of these (horizontal flipping is used by default). If the image is flow Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions
Note
This transform returns a tuple of images and there may be a mismatch in the number of inputs and targets your Dataset returns. See below for an example of how to deal with this.
- Parameters
size (sequence or int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
vertical_flip (bool) – Use vertical flipping instead of horizontal
Example
>>> transform = Compose([ >>> TenCrop(size), # this is a list of PIL Images >>> Lambda(lambda crops: flow.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor >>> ]) >>> #In your test loop you can do the following: >>> input, target = batch # input is a 5d tensor, target is 2d >>> bs, ncrops, c, h, w = input.size() >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
-
class
flowvision.transforms.
ToPILImage
(mode=None)[source]¶ Convert a tensor or an ndarray to PIL Image.
Converts a flow.Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while preserving the value range.
- Parameters
mode (PIL.Image mode) – color space and pixel depth of input data (optional). If
mode
isNone
(default) there are some assumptions made about the input data: - If the input has 4 channels, themode
is assumed to beRGBA
. - If the input has 3 channels, themode
is assumed to beRGB
. - If the input has 2 channels, themode
is assumed to beLA
. - If the input has 1 channel, themode
is determined by the data type (i.eint
,float
,short
).
-
class
flowvision.transforms.
ToTensor
[source]¶ Convert a
PIL Image
ornumpy.ndarray
to tensor.Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a flow.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling.
Note
Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks.
flowvision.utils¶
Useful utils for deep learning tasks
-
class
flowvision.utils.
ModelEmaV2
(model, decay=0.9999, device=None)[source]¶ Model Exponential Moving Average V2 borrowed from: https://github.com/rwightman/pytorch-image-models/blob/master/timm/utils/model_ema.py
Keep a moving average of everything in the model state_dict (parameters and buffers). V2 of this module is simpler, it does not match params/buffers based on name but simply iterates in order.
This is intended to allow functionality like https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
A smoothed version of the weights is necessary for some training schemes to perform well. E.g. Google’s hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA smoothing of weights to match results. Pay attention to the decay constant you are using relative to your update count per epoch.
To keep EMA from using GPU resources, set device=’cpu’. This will save a bit of memory but disable validation of the EMA weights. Validation will have to be done manually in a separate process, or after the training stops converging.
This class is sensitive where it is initialized in the sequence of model init, GPU assignment and distributed training wrappers.
-
flowvision.utils.
accuracy
(output, target, topk=(1))[source]¶ Computes the accuracy over the k top predictions for the specified values of k
-
flowvision.utils.
dispatch_clip_grad
(parameters, value: float, mode: str = 'norm', norm_type: float = 2.0)[source]¶ Dispatch to gradient clipping method
- Parameters
parameters (Iterable) – model parameters to clip
value (float) – clipping value/factor/norm, mode dependant
mode (str) – clipping mode, one of ‘norm’, ‘value’, ‘agc’
norm_type (float) – p-norm, default 2.0
-
flowvision.utils.
make_grid
(tensor: Union[oneflow.Tensor, List[oneflow.Tensor]], nrow: int = 8, padding: int = 2, normalize: bool = False, range: Optional[Tuple[int, int]] = None, scale_each: bool = False, pad_value: int = 0) → oneflow.Tensor[source]¶ Make a grid of images.
- Parameters
tensor (Tensor or list) – 4D mini-batch Tensor of shape (B x C x H x W) or a list of images all of the same size.
nrow (int, optional) – Number of images displayed in each row of the grid. The final grid size is
(B / nrow, nrow)
. Default:8
.padding (int, optional) – amount of padding. Default:
2
.normalize (bool, optional) – If True, shift the image to the range (0, 1), by the min and max values specified by
range
. Default:False
.range (tuple, optional) – tuple (min, max) where min and max are numbers, then these numbers are used to normalize the image. By default, min and max are computed from the tensor.
scale_each (bool, optional) – If
True
, scale each image in the batch of images separately rather than the (min, max) over all images. Default:False
.pad_value (float, optional) – Value for the padded pixels. Default:
0
.
Example: See this notebook here
-
flowvision.utils.
save_image
(tensor: Union[oneflow.Tensor, List[oneflow.Tensor]], fp: Union[str, pathlib.Path, BinaryIO], nrow: int = 8, padding: int = 2, normalize: bool = False, range: Optional[Tuple[int, int]] = None, scale_each: bool = False, pad_value: int = 0, format: Optional[str] = None) → None[source]¶ Save a given Tensor into an image file.
- Parameters
tensor (Tensor or list) – Image to be saved. If given a mini-batch tensor, saves the tensor as a grid of images by calling
make_grid
.fp (string or file object) – A filename or a file object
format (Optional) – If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used.
**kwargs – Other arguments are documented in
make_grid
.
Changelog¶
V0.2.1¶
New Features
Support
transforms.Grayscale
andtransforms.Solarization
transforms #220Support TorchHub functionality #258
Support
transforms.RandomAffine
method #259Support
transforms.RandomRotation
method #261
Bug Fixes
Improvements
refine TODO items and align transforms.ColorJitter to torchvision(0.13.1):#264
Docs Update
Contributors A total of 3 developers contributed to this release. Thanks @BBuf, @rentainhe, @Flowingsun007
V0.2.0¶
New Features
Support PoolFormer model and pretrained weight #137
Support
IResNet
model for face recognition #160Support Dynamic convolution module #166
Support
transforms.RandomGrayscale
method #171Support
transforms.GaussianBlur
method #188Support
SUN397
,Country211
, dataset #215Support
Flowers102
,FGVCAircraft
,OxfordIIITPet
,DTD
,Food101
,RenderedSST2
,StanfordCars
,PCAM
,EuroSAT
,GTSRB
,CLEVR
,FER2013
dataset #217
Bug Fixes
Fix benchmark normalize mode error #146
Improvements
Docs Update
Contributors A total of x developers contributed to this release.
v0.1.0 (10/02/2022)¶
New Features
Support
trunc_normal_
inflowvision.layers.weight_init
#92Support
PolyLRScheduler
andTanhLRScheduler
inflowvision.scheduler
#85Add
resmlp_12_224_dino
model and pretrained weight #128
Bug Fixes
Fix
F.normalize
usage in SSD #116Fix bug in
EfficientNet
andRes2Net
#122Fix error pretrained weight usage in
vit_small_patch32_384
andres2net50_48w_2s
#128
Improvements
Refator
trunc_normal_
andlinspace
usage in Swin-T, Cross-Former, PVT and CSWin models #100Refator
Vision Transformer
model #115Refine
flowvision.models.ModelCreator
to supportModelCreator.model_list
func #123Refator README #124
Refine
load_state_dict_from_url
inflowvision.models.utils
to support downloading pretrained weights to cache dir~/.oneflow/flowvision_cache
#127Rebuild a cleaner model zoo and test all the model with pretrained weights released in flowvision #128
Docs Update
Update
Vision Transformer
docs #115Add
Getting Started
docs #124Add
resmlp_12_224_dino
docs #128Fix
VGG
docs bug #128Add
ConvNeXt
docs #93
Contributors
A total of 5 developers contributed to this release. Thanks @rentainhe, @simonJJJ, @kaijieshi7, @lixiang007666, @Ldpe2G